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Measurement of Academic Growth of Individual Students toward Variable and Meaningful Academic Standards

1. Introduction

In recent years there has been much interest and effort extended in using 
longitudinal student achievement data to measure the influence of various 
educational entities on the rate of student academic progress for both formative 
and summative evaluations. These efforts have arisen from different historical 
academic quantitative initiatives. The most prominent of these approaches can 
be placed under two broad categories. Even though others have pursued various 
aspects of the work, the work of Raudenbush and Bryk (2002) and Goldstein 
(2003) with their approach based on hierarchical linear models and the work of 
Sanders, et al (1997) under the banner of valueadded assessment represent 
these two major categories. In both categories there is an attempt to exploit the 
relationships that exist among test scores over time at the student level. However, 
there are major “real world” problems that exist even within the best-constructed 
longitudinally merged database that require the analyst to make important 
decisions that indeed determine the inference space to which the resulting 
estimates may be applied. Some of the major issues that must be dealt with are: 1. 
how are fractured student records to be used; 2. how are data from different test 
sources to be used; 3. how are non-vertically scaled test data to be used; 4. how 
are data from students who move among buildings to be used; 5. at the classroom 
level how are team teaching, departmentalized and self-contained classroom 
instruction to be accommodated. It is recognized that not all of these issues are 
germane in every application of longitudinal modeling for assessment purposes, 
but they represent examples of important issues that must be addressed.

While measures of individual student progress already constitute an integral part of 
the process of estimating the effects of educational entities referred to above, there 
has been a growing interest in the measurement of individual student progress 
toward various academic standards for a variety of other purposes. Several 
different approaches have been proposed for doing this (some to be presented at 
this conference). It is this aspect that we wish to focus on using statistical models 
which, while longitudinal, might not be considered to be “growth models” in the 
traditional sense. We hope to show why these models are useful and perhaps 
superior, citing their advantages relative to some of the alternative growth models. 
We plan to emphasis the advantages in consideration of the “real world” problems 
mentioned above.
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2. Some Longitudinal (Growth) Models

In the most common usage of the term presently, a “growth model” includes an explicit 
equation describing student academic growth over time – that is, “time” appears 
explicitly in the model (where, in educational applications, “time” typically represents 
Year and/or Grade). Because of the hierarchical nature of student data, recent growth 
models have mostly been hierarchical linear models (HLMs). For simplicity in describing 
these models, we will keep the hierarchy simple – students nested within schools – 
ignoring their nesting within classrooms within schools. This has been fairly common 
in practice because information on which teachers taught which students has often 
been unavailable to the analysts. Historically, because of software limitations, a “nested” 
model has been used, in which students were assumed to stay in the same school 
over time. Recent examples in which the nested model has been used include Kiplinger 
(2004), Doran and Izumi (2004), and Stevens (2005). More recently, software for “cross-
classified” models has become available, allowing for the possibility that students may 
change schools from year to year. An example is Ponisciak and Bryk (2005). Both 
models are described in Raudenbush and Bryk (2002: chapter 8, p. 237-245; chapter 
12, p. 389-396). We briefly describe each model.

2.1 Nested Model

Shown below is a generic nested model using the notation of Raudenbush and Bryk 
(2002). In this model, “i” identifies the student, “j” identifies the school within which the 
student is nested, and “t” is “time” (Year/Grade), often coded as t = 0, 1, 2, … The 
explicit growth model of a student’s scores over time is given in the level-1 equation; 
here a linear model is used. The level- 2 equations account for variation in intercepts 
and slopes among students within schools. Variable X is a student-level characteristic; 
in practice there may be multiple X variables: minority status, poverty status, special 
education status, initial achievement level, etc. The level- 3 equations account for 
variation among schools. Variable W is a school-level characteristic; in practice, 
there may be multiple W variables: percent minority, percent in poverty, mean initial 
achievement level, etc.

Level-1: Ytij = π0ij + π1ij·t + etij.

Level-2: π0ij = b00j + b01j Xij + r0ij,

		  π1ij = b10j + b11j Xij + r1ij.

Level-3: b00j = g000 + g001 Wj + u00j,

		  b01j = g010 + g011 Wj + u01j,

		  b10j = g100 + g101 Wj + u10j,

		  b11j = g110 + g111 Wj + u11j.

After exploratory modeling, some of the terms in the above model may be dropped 
(nonsignificant fixed-effects, random effects with negligible variability). For example, 
the g011·Wj, u01j, g111·Wj, and u11j terms are often omitted, producing a final combined 
model such as the following: 

Ytij = (g000 + g001 Wj + g010 Xij + u00j + r0ij) + (g100 + g101 Wj + g110 Xij + u10j + r1ij)·t + etij.
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See Raudenbush and Bryk (2002), Kiplinger (2004), Doran and Izumi (2004), and 
Stevens (2005) for additional information and examples.

2.2 Cross-Classified Model

Shown below is a simple, unconditional (no X or W variables), two-level cross-
classified model. As in the nested model, the explicit growth model for a student is 
given by the level-1 equation. The level-2 equations contain the random variation 
among students in the intercepts and slopes of their growth curves (the “r” variables), 
and it also contains the “school effects” (the “u” variable). It is because schools and 
students are crossed rather than nested that they both appear in the same level of this 
hierarchical model. Conceptually, the “school effects” are expressed as “deflections” of 
the growth curve upward or downward; i.e., they affect the intercept (level) of the curve 
but not the slope (growth rate).

Level-1: Ytij = π0ij + π1ij·t + etij.

Level-2: π0ij = q0 + r0i + u0j,

		  π1ij = q1 + r1i.

Combined: Ytij = (q0 + r0i + u0j) + (q1 + r1i)·t + etij.

A problem with the above model is that the “school effect” disappears at the end 
of each school year. Shown below is a more realistic model which treats the school 
effects as cumulative. Such a model is conceptually no more complicated than the one 
above, but the notation is more challenging. For additional generality, the model below 
also includes one student-level characteristic (Xi) and one school-level characteristic 
(Wj). In this model, Dhij is a dummy variable with Dhij=1 if student “i” was in school “j” 
at time “h”, otherwise Dhij=0.

Level-1: Ytij = π0ij + π1ij·t + etij.

Level-2: π0ij = q0 + b0 Xi + r0i + ej eh≤t Dhij (g0 Wj + u0j),

		  π1ij = q1 + r1i.

Combined: Ytij = [q0 + b0 Xi + r0i + ej eh≤t Dhij (g0 Wj + u0j)] + [q1 + r1i]·t + etij.

A common feature of these growth models, whether nested or cross-classified, is that 
the response variable (Y) represents a single characteristic that “grows” over time; 
that is, the test scores must be measured on a continuous vertically-linked scale. It is 
also necessary to specify an explicit growth function. Linear growth functions are quite 
popular because of their simplicity (which is why we have used them here), but non-
linear functions can also be used. In contrast, the approach we describe below avoids 
these limitations.
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3. EVAAS® Projection Methodology – A Different Approach

3.1 The methodology. The purpose of the EVAAS projection methodology is to 
provide an estimate of an individual student’s academic achievement level at some 
point in the future under the assumption that this student will have an average 
schooling experience in the future. (Note that in EVAAS applications we have occasion 
to obtain “predictions” both for future tests a student may take and for tests a student 
has already taken – residuals from the latter are useful for diagnostic purposes. It is 
often helpful to distinguish between the two by calling the former “projections” and the 
latter “predictions.”) The basic methodology is simply to use a student’s past scores 
to predict (“project”) some future score. At first glance, the model used to obtain the 
projections appears to be no more complex than “ordinary multiple regression,” the 
basic formula being:

Projected_Score = MY + b1(X1 − M1) + b2(X2 − M2) + ... = MY + xi
T b

where MY, M1, etc. are estimated mean scores for the response variable (Y) and the 
predictor variables (Xs). However, several circumstances cause this to be other than 
a straightforward regression problem. (1) Not every student will have the same set of 
predictors; that is, there is a substantial amount of “missing data.” (2) The data are 
hierarchical: students are nested within classrooms, schools, and districts, and the 
regression coefficients need to be calculated in such a way as to properly reflect this. 
(3) The mean scores that are substituted into the regression equation also must be 
chosen to reflect the interpretation that will be given to the projections. As noted above, 
in EVAAS applications a projection is the score that a student would be expected to 
make assuming that the student has the average schooling experience in the future. 
The means should therefore be those of an average school within the population of 
schools of interest. Also, given this interpretation, the nesting needs to be carried 
only to the school level (students within schools); it is not necessary to carry it to the 
classroom level.

The missing data problem can be solved by finding the covariance matrix of all the 
predictors plus the response, call it C, with submatrices CXX, CXY (and CYX = CXY

T), 
and CYY. The regression coefficients (slopes) can then be obtained as b = CXX

−1 CXY. 
For any given student, one can use the subset of C corresponding to that student’s 
set of scores to obtain the regression coefficients for projecting that student’s Y value. 
Because of the hierarchical nature of the data (the second problem), the covariance 
matrix C must be a pooled-within-school covariance matrix. We obtain this matrix 
by maximum likelihood estimation using an EM algorithm (to handle missing values) 
applied to school-mean-centered data. Means for an “average school” are obtained 
by calculating school-mean scores and averaging them over schools. For brevity, we 
refer to the elements of C, along with the vector of estimated means, as the “projection 
parameters.” Generally, we obtain the projection parameters using the most recent 
year’s data. That is, we use students who have a Y value in the most recent year 
and X values from earlier years to get the projection parameters. Projections are then 
obtained by applying these parameters to students who have X values in the current 
year (and earlier years) but no Y value.

4



Measurement of Academic Growth of Individual Students toward Variable and Meaningful Academic Standards

Note that, unlike the growth models described above, the EVAAS methodology does 
not require vertically linked data nor does it need to assume a linear growth function (or 
any other specific growth function). Instead, what is required are good predictors of the 
response variable. The predictors need not be on the same scale with the response 
or with one another. Potentially, they could be test scores from different vendors and 
even in different subjects from the response. This gives the EVAAS methodology 
considerable flexibility.

3.2 A Connection to “Growth Models” 

Consider the following simplified two-level nested linear growth model where “i” 
identifies a student and “t” is time:

Level-1: Yti = π0i + π1i·t + eti.

Level-2: π0i = b00 + r0i,

		  π1i = b10 + r1i.

Combined: Yti = (b00 + r0i) + (b10 + r1i)·t + eti = (b00 + b10·t) + (r0i + r1i·t + eti) = μt + dti.

Recall that the “projection parameters” for the EVAAS methodology consist of a vector 
of estimated means plus an estimated covariance matrix. The final combined model 
above has this same structure. The collection of μt values constitutes a vector of 
means, and the “errors” (dti) are correlated. Specifically, the error covariance matrix for 
the i-th student is

Ci = var(di) = Zi T Zi
T + Is2 where

s2 = var(eti), assumed to be the same for all “t” and “i”;

T = var({r0i, r1i}), assumed to be the same for all “i”;

Zi has two columns: a column of “1”s (intercept column) and a column of “t”s.

However, there are important differences between the growth model and the EVAAS 
model in the nature of the means and covariances. (1) The estimated means in the 
EVAAS model need not fall along a straight line (or follow any other specific functional 
form); indeed, as already noted they need not be on the same scale or even in 
the same subject. (2) The covariance matrix in the EVAAS model is completely 
unstructured while the one from the linear growth model has a specific structure 
as shown above. Nevertheless, given the structural similarity of the two models in 
those cases where either model may be applied, it is of interest to compare their 
performance in making projections. This is addressed in the next section.
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3.3 Simulation Results 

In order to better evaluate the differences between the EVAAS model and the linear 
growth model, a small simulation study was done. Yti values were generated for 2500 
students on 4 occasions (i = 1, …, 2500 and t = 0, 1, 2, 3) using the nested linear growth 
model of section 3.2 with b00 = 400 and b10 = 100, producing means (μt) of  
400, 500, 600, 700. In addition, s2 = var(eti) = 52 = 25, t00 = var(r0i) = 152 = 225,  
t11 = var(r1i) = 52 = 25, t01 = cov(r0i, r1i) = 0. (Additional simulations were done in 
which r0i and r1i were either positively or negatively correlated; results were similar to 
those reported here.) Projections for t=3 were then obtained using the nested linear 
growth model and using the EVAAS model. For each model, the projected values were 
compared to the actual Y3i values using the mean prediction error (MPE), also called 
bias, calculated as e [projected(Y3i) − Y3i] / 2500, and using the mean squared prediction 
error (MSPE) calculated as e [projected(Y3i) − Y3i]2 / 2500. Ideally, MPE should be zero, 
indicating unbiased projections; and a smaller MSPE indicates better performance.

Implementing the simulation highlights another difference between the EVAAS model 
and the growth model. In the EVAAS model, two different cohorts of students are 
required. One cohort, consisting of students who have already taken the t=3 test, 
is used to obtain the projection parameters. The parameters are then applied to a 
second cohort of students who (in actual applications) have not yet taken the t=3 test 
(although, in the simulation, we know their t=3 scores). Consequently, in the simulation, 
two different sets of 2500 scores were generated for the EVAAS model. In contrast, 
the linear growth model requires slopes and intercepts for those students whose 
t=3 scores are going to be projected. Consequently the model parameter estimates 
must come from the same cohort of students whose scores are to be projected. This 
is the second cohort of students who would not yet have taken the t=3 test. In the 
simulation, this scenario was implemented by using the t=0, 1, 2 data from the second 
cohort to estimate the growth model parameters. These parameters were then used to 
project the score at t=3.

Results from this simulation are shown in the first row (“Linear-1”) of Table 1 (the other 
rows are described below). What is noteworthy here is that the two models (labeled 
HLM and EVAAS in the table) performed equally well. Both produced essentially 
unbiased projections (MPE near zero), and the MSPEs were virtually identically. Indeed, 
the projections themselves were nearly identical. The “Max Abs Diff” column shows the 
magnitude of the largest difference between the projection from the growth model and 
the projection for the same student from the EVAAS model. In this case, the projections 
differed by less than half a point, at the most, in a data set in which the t=3 scores had 
a standard deviation of approximately 16.6.

The initial (“Linear-1”) simulation represents a “best case scenario” in that all the 
assumptions of the models were met. Additional simulations were done to examine 
the consequences of violating the model assumptions. An examination of the pattern 
of scores across grades (along the 50th or any other percentile) for any number of large 
scale, vertically linked standardized tests reveals that nonlinearity is the rule rather than 
the exception. Thus it seemed important to examine the consequences of nonlinearity. 
The data for these additional simulations were generated with using the model

Yti = μt + r0i + eti.

6
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As before, s2 = var(eti) = 25 and t00 = var(r0i) = 225. For μt, three different specifications 
were used in order to control the degree of nonlinearity. First, as a reference, a linear 
growth curve was used with μt = {400, 500, 600, 700}, the same as in the previous 
simulation. This is referred to as “Linear-2” in Table 1. It differs from “Linear-1” in that 
the data were generated with random intercepts but without random slopes, resulting 
in less overall variation. This resulted in a smaller MSPE for both models, but otherwise 
the results were comparable to the “Linear-1” results.

Second, a “negligibly nonlinear” growth pattern, labeled “Nonlinear-1,” was used with 
μt = {400, 505, 605, 700}. If these values are plotted against time, the nonlinearity is 
not evident to the naked eye. The results for the EVAAS model were the same as for 
“Linear-2.” This was expected since the EVAAS model does not assume linearity. For 
the HLM linear growth model, however, the results were quite different. The projections 
were biased, with the projected scores averaging about 8 points higher than the actual 
scores; and the MSPE was about three times as large as for the EVAAS model.

Third, a “modestly nonlinear” growth pattern, labeled “Nonlinear-2,” was used with μ
t = 

{400, 510, 610, 700}. Again, as expected, the EVAAS model results were the same as 
for “Linear-2.” For the HLM linear growth model, the amount of bias in the projections 
doubled to over 16 points, and the MSPE grew to nearly ten times the size of the 
MSPE for the EVAAS model.

MPE MPE MSPE MSPE Max Abs

HLM EVASS HLM EVASS Diff

Linear-1 −0.19 −0.11 65.1 65.1 0.47

Linear-2 −0.19 +0.14 32.0 32.0 0.55

Nonlinear-1 +8.15 +0.14 98.3 32.0 8.37

Nonlinear-2 +16.48 +0.14 303.5 32.0 17.05

Nonlinear-1/ Linear-2 −0.19 −3.02 32.0 41.1 3.09

Nonlinear-1/ Linear-2 −0.19 −6.19 32.0 70.2 6.25

Table 1. Growth Curve Simulation Results

Because the HLM growth model is a special case of the EVAAS model, and because 
nonlinear growth is so commonplace, it seemed most reasonable to focus on the 
consequences of nonlinearity. Nevertheless, during the question-and-answer period 
following the public presentation of this paper, the question was raised as to whether 
we had “tilted” our simulations to favor EVAAS. In response, we have added two 
additional simulations which favor the linear growth model. While, in general, the linear 
growth model makes more restrictive assumptions than the EVAAS model, there is one 
assumption that the EVAAS model makes that is not made by the linear growth model. 
Recall that the EVAAS methodology requires two cohorts of students; one cohort is used 
to obtain the parameter estimates to be used in making projections in the second cohort. 
The linear growth model, in contrast, uses the same cohort (the second cohort) for both 
parameter estimation and projection. The assumption, in using the EVAAS methodology, 
is that the same parameters (means and covariances) apply in both cohorts.
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In the two additional simulations, this assumption was violated by using a model to 
generate cohort one that differed from that used to generate cohort two. Cohort two 
was generated using the “Linear-2” specifications. As a result, the assumptions of the 
linear growth model were met; and as the last two rows of Table 1 show, the linear 
growth model results matched those of the “Linear-2” simulation (row two of Table 
1). Cohort one, however, was generated from a nonlinear model, either “negligibly 
nonlinear (“Nonlinear-1”) or “modestly nonlinear” (“Nonlinear-2”). Thus, the EVAAS 
parameter estimates were “anticipating” nonlinear growth, but the students to whom 
they were applied to get projections displayed linear growth. As a consequence, the 
EVAAS model results were biased, but the amount of bias was smaller than that of the 
linear growth model when applied to nonlinear data. Also, as expected, the MSPEs 
for the EVAAS model were higher than for the linear growth model; but, again, the 
increase in MSPE was much smaller than that which occurred with the linear growth 
model under nonlinearity. Specifically, the EVAAS MSPE was larger than the linear 
growth model MSPE by about 28% (for “Nonlinear-1”) to 220% (“Nonlinear-2”). Recall 
that in the “reverse” situation when cohort two had nonlinear growth (rows 3 and 4 of 
Table 1), the linear growth model MSPE was larger than the EVAAS MSPE by about 
307% (“Nonlinear-1”) to 948% (“Nonlinear-2”).

To summarize: When the assumptions of the models are met, they performed equally 
well (in these simulations). When the assumptions of one model were violated, but 
the assumptions of the other model were met, the “correct” model performed better. 
However, in these simulations, the EVAAS model seemed to be more robust in the 
presence of a violation of assumptions than did the linear growth model. Finally, 
as to the realism of the violations of assumptions, nonlinear growth seems to be 
commonplace in most of the vertically scaled tests with which we are familiar. Thus, 
the consequences of nonlinearity are of particular concern. On the other hand, the 
possibility that the means and covariances might change non-negligibly from one 
cohort to the next seems to us less plausible, at least in the case of a large district with 
a relatively stable student population. For a smaller district undergoing considerable 
demographic change, this would be more of a concern and would merit careful 
monitoring.

3.4 EVAAS Projection Advantages 

There are a number of features of the EVAAS projection methodology that are attractive.

■	 Unlike growth curve models, there is no requirement that the tests scores (Ys 
and Xs) be vertically linked; indeed they need not even be from the same test 
company or even in the same subject! The important feature is that the X-values 
be good predictors of the Y-value. This provides an enormous amount of 
flexibility in the choice of what could be projected and which predictors (Xs) to 
use in making the projections (see Section 4).

■	 Even in the case when the Xs and Ys are vertically linked, there is no assumption 
required about the overall shape of the growth curve. Use of the covariance 
matrix (C) does carry with it the implicit assumption of linear relationships between 
pairs of scores but no assumption of linearity, or any other shape, over time.
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■	 Missing values are easily handled so that different students can have different sets 
of predictors.

■	 Massive data sets are readily accomodated. For example, for one of our 
applications (for the state of Tennessee), we are able to provide projections for 
every student in the state to a variety of endpoints, ranging from next year’s test 
scores to high school end-of-course test scores to college entrance exam scores.

4. Using Projections to Enhance NCLB and  
Other Important Educational Objectives

The motivation for using projections in conjunction with NCLB is this: having students 
who are currently below proficiency but who are “on track” to be proficient at some 
future point should not be held against a school (or district), especially if that school 
has done a good job of accelerating students toward proficiency. In effect, this 
carries the “adequate yearly progress” idea to the student level. Projections provide 
a convenient way to identify whether or not a student is on track to be proficient. 
However, several decisions must be made in order to use projections for this purpose.

First, specific future assessments must be chosen as the basis for projecting eventual 
proficiency. These assessments must include Mathematics and Reading (and 
eventually Science) since the focus of NCLB is proficiency in those subjects. As an 
example of such assessments, in Tennessee there are high school “gateway” tests in 
Mathematics (Algebra I), Reading (English II) and Science (Biology I) which students must 
pass to graduate. These provide reasonable future points at which to assess projected 
proficiency. Because of Tennessee’s long history of annual testing, it is possible to begin 
projecting student results on these gateway tests as early as fourth grade!

Second, “eventual proficiency” must be defined. A simple definition is: if the projected 
score is above the proficiency cutpoint, the student is considered to be on track to 
being proficient. Third, one must decide how projected proficiency could get counted 
in the NCLB percent proficient calculations. Here is one possibility that demonstrates 
how this could be applied. If a student’s projected score is above the proficiency 
standard for an approved academic endpoint, then this student will be deemed to be 
“proficient.” After all students’ projected scores are evaluated in this manner, then all 
of the approved AYP rules can be applied, including the requirements for meeting the 
standards for all subgroups.

Although the individual student projections are increasingly applicable to the NCLB 
safe harbor discussion, one of the original intentions for providing this student level 
information was to encourage educators to consider the academic needs of individual 
students rather than groups of students. The availability of projections to varying 
endpoints, serves as a reminder to educators that some students are underserved 
educationally if the only expectation for them is minimal proficiency. Proficiency in 
the next grade may be the direst academic need for a student or a school with 
disproportionately more students at lower achievement levels, but it should never be 
interpreted as a blanket expectation for all students within those schools. Students 
with demonstrated higher levels of academic attainment deserve a schooling 
experience that enables appropriate academic progress, even beyond the minimum 
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proficiency determination. Students whose academic growth is sustained each year 
at an appropriate level are better prepared for advanced high school course work and 
have a greater likelihood of college or entry level work success.

One specific use of the individual student projections is an indicator for determining 
course assignment. In urban areas, access within the district to the projections can 
accelerate the guidance necessary to enroll students who transfer frequently within 
the district. For example, students who demonstrate sufficiently high probabilities of 
success in algebra in grade six should be encouraged to complete algebra before 
grade nine and to continue with rigorous coursework across the high school years. 
Particularly in schools serving poor or minority students, lack of availability of advanced 
curricula for adequately prepared students in middle grades contributes to widening 
achievement gaps. Sixth grade student projections to algebra proficiency provide a 
heads-up regarding the number of algebra classes necessary to meet the academic 
needs of the school’s population.

Another contributor to widening achievement gaps has to do with students’ inability 
to view themselves as potentially successful college students some time in the future. 
Special mentoring programs to enhance counseling support are another use of the 
student projections. In these instances, the student projections provide a communication 
vehicle for principals, teachers and guidance counselors to demonstrate to students and 
parents the importance of rigorous courses for students who are academically prepared 
to be successful in these courses.

5. Discussion/Conclusions

The terms “growth model” and “value added model” are often loosely used 
interchangeably. However, a clearer distinct between the two terms can be drawn if the 
intent of the use of the analytical results from the subsequent data analyses are implied. 
If the intent is to use student longitudinal data to account for prior academic achievement 
levels to enable a fairer, more objective measure of the influence of various educational 
entities on the rate of student progress, then the term “value-added model” is most often 
used. If however, the intent is to use the longitudinal analyses to provide estimates of 
future performance for individual students then the terms “growth model” or “projection 
model” would be favored.

Regardless of the use of the longitudinal data, either for “growth or projection models” 
or for “value-added models,” several non-trivial analytical problems have to be 
addressed:

■	 How to accommodate fractured student records without introducing major biases 
in the resulting analyses by either eliminating the data for students with missing 
data, or by using overly simplistic imputation procedures?

■	 How to exploit all of the longitudinal data for each student when all of the 
historical data are not on the same scale?
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■	 How to provide educational policy makers more flexibility in the use of historical 
data when testing regimes have changed over time? Note: As we have worked 
with many districts within many states, very few have maintained the same testing 
regime consistently over years.

Considering all of these factors, we have deliberately chosen to pursue our projection 
modeling efforts because many of the other proposed growth models lack the flexibility 
and robustness to accommodate the reality of the data structures that presently exist 
and are likely to be present in the future. Additionally, it is with this same recognition 
that all of our value-added models have been engineered to have this same flexibility 
and robustness.
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