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Update to 2019-2020 Report Card Information 
 

 
The U.S. Department of Education has provided states the ability to seek one-year waivers from the 
Every Student Succeeds Act’s (ESSA) testing and accountability requirements. The Ohio General 
Assembly subsequently passed emergency legislation canceling the spring administration of Ohio’s 
State Tests and waiving report card requirements other than reporting of some limited, available data. 
The legislation also put in place a “Safe Harbor” period for many elements of the accountability 
system. Accordingly, the Ohio Department of Education sought and received a federal ESSA waiver 
for the 2019-2020 school year. 
 
This technical document details how the measure or calculation works in a typical school year. Ohio 
School Report Cards, Dropout Prevention and Recovery report cards and Career-Technical Planning 
District report cards all have multiple measures that use assessment data that are not available or are 
substantially limited this year. 
 
 

Please visit the Report Card FAQ website for more information about  
data availability for the 2019-2020 report cards. 

 
 

Contact accountability@education.ohio.gov with additional questions. 
 

http://education.ohio.gov/Topics/Data/Report-Card-Resources/FAQ
mailto:accountability@education.ohio.gov
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1 Introduction to Value-Added Reporting in Ohio 
The term “value-added” refers to a statistical analysis used to measure the impact of districts, schools, 
and teachers on the academic progress rates of groups of students from year to year. Conceptually and 
as a simple explanation, a value-added “score” is calculated in the following manner: 

• Growth = current achievement/current results compared to prior achievement/prior results 
with achievement being measured by a quality assessment such as Ohio’s state tests (OSTs). 

Although the concept of growth is easy to understand, the implementation of a statistical model of 
growth is more complex. There are several decisions related to the available modeling, local policies and 
preferences, and business rules. Key considerations in the decision-making process include: 

• What data are available? 
• Given the available data, what types of models are possible? 
• What is the growth expectation? 
• How is effectiveness defined in terms of a measure of certainty? 
• What are the business rules and policy decisions that impact the way the data are processed? 

The purpose of this document is to guide you through value-added modeling based on the statistical 
approaches, policies, and practices selected by the State of Ohio and currently implemented by EVAAS. 
This document describes the input data, modeling, and business rules for district, school, and teacher 
value-added reporting in Ohio. 

The State of Ohio and the EVAAS team have provided value-added reporting since 2002. The initial 
collaboration was through Project SOAR, a 42-district pilot. By 2006, district and school value-added 
reporting was available statewide, and in 2011, Teacher Value-Added reports also became available for 
parts of the state. The first year of statewide implementation for teacher value-added reporting that 
included all teachers with students taking the state assessments in grades 4–8 was 2013. 
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2 Input Data Used in the Ohio Value-Added Model 
This section provides details about the input data used in the Ohio value-added model, such as the 
requirements for verifying appropriateness in value-added analysis as well as the student, teacher, 
principal, and/or school information provided in the assessment files. 

2.1 Determining Suitability of Assessments 

2.1.1 Current Assessments 
To be used appropriately in any value-added analyses, the scales of these tests must meet three criteria. 
(Additional details about each of these requirements are provided in Section 8, Data Quality and Pre-
Analytic Data.) 

• There is sufficient stretch in the scales to ensure progress can be measured for both low-
achieving students as well as high-achieving students. A floor or ceiling in the scales could 
disadvantage educators serving either low-achieving or high-achieving students.  

• The test is highly related to the academic standards so that it is possible to measure progress 
with the assessment in that subject, grade, and year. 

• The scales are sufficiently reliable from one year to the next. This criterion typically is met 
when there are a sufficient number of items per subject, grade, and year. This will be monitored 
each subsequent year that the test is given. 

These criteria are met by Ohio’s standardized assessments. The current value-added implementation 
utilizes the OST statewide assessments, which measure Ohio’s standards as well as college readiness 
assessments, such as ACT and SAT. In the past, some districts also received value-added reporting based 
on extended testing (vendor assessments that measure subjects and grades outside the state testing 
scope), but this reporting is not available because these assessments were not administered in 2018-19. 

2.2 Assessment Data Used in Ohio 
OSTs are administered in the spring semester except for Reading in grade 3 and the EOCs, which are 
administered during the fall and spring semesters. In grade 3, the higher of the two scores for each 
student are used in the value-added reporting, which is consistent with the accountability rules in Ohio. 
The ACT or SAT assessment is administered to all students across the state in the spring of grade 11.  

2.2.1 Tests Given in Consecutive Grades for the Same Subject 
EVAAS receives tests that are given in consecutive grades for the same subject, which currently include: 

• OST Mathematics in grades 3–8 
• OST Reading in grades 3–8 

2.2.2 Tests Given in Non-Consecutive Grades for the Same Subject 
EVAAS receives tests that are given in non-consecutive grades for the same subject, which currently 
include: 

• OST Algebra I, Mathematics I and II, and Geometry 
• OST English Language Arts (ELA) I and II 
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• OST Science in grades 5 and 8 
• OST Biology 
• OST American History and American Government 
• ACT Math, English, and Reading 
• SAT Evidence-Based Reading and Writing, and Math 

2.2.3 Student Identification Information 
Ohio’s state law prohibits ODE from maintaining student names; therefore, the data ODE sends to 
EVAAS contains only the state student ID (SSID) for each student and no name information. IBM 
contracts with the State of Ohio to maintain the crosswalk with student names and IDs, so IBM securely 
transfers student names to Battelle for Kids (BFK) and The Management Council of the Ohio Education 
Computer Network (MCOECN). Those student names are matched using SSID and forwarded to EVAAS. 
These data are populated in the secure EVAAS website and then accessed by Local Education Agencies 
(LEAs) for further analysis and improvement purposes. The file from IBM contains the following: 

• Student last name 
• Student first name 
• Student date of birth 
• State student ID (SSID) 

2.2.4 Assessment Information Provided  
EVAAS obtains all assessment information from the files provided by ODE. These files provide:  

• Scale score 
• Performance level 
• Test taken 
• Tested grade 
• Accountable district IRN 
• Accountable org IRN 
• Testing district IRN 
• Testing org IRN 
• Reporting district IRN 
• Reporting org IRN 

Some of this information, such as performance levels, is not relevant to the ACT or SAT tests.  

2.3 Student-Level Information 
Student-level information is used in creating reports displayed in the EVAAS web application so that 
educators can analyze the data to inform practice and assist all students with academic progress. This 
information is also used for accountability categories that are reported to the public. EVAAS receives this 
information in the form of various socioeconomic, demographic, and programmatic identifiers in the 
student data system. In some cases, these identifiers are used to create categories for the accountability 
system.  

Currently, these categories are: 
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• Gifted – Reading 
• Gifted – Math 
• Gifted – Science 
• Gifted – Superior Cognitive 
• Migrant 
• English Learner 
• Economically Disadvantaged 
• Students with Disabilities 
• Gender 
• Race 

• American Indian 
• Asian/Pacific Islander  

o This includes Asian and Hawaiian/Other Pacific Islander 
• Black 
• Hispanic 
• White 
• Multi-Racial 

More information can be found in Ohio’s Education Management Information System (EMIS) Manual 
about each of these identifiers and how they are defined by ODE at: 
http://education.ohio.gov/Topics/Data/EMIS/EMIS-Documentation/Current-EMIS-Manual. 

2.4 Teacher-Level Information 
A high level of reliability and accuracy is critical for using value-added scores for both improvement 
purposes and high-stakes decision-making. Before teacher-level value-added scores are calculated, 
teachers in Ohio are given the opportunity to complete roster verification to verify linkages between 
themselves and their students during the year. Roster verification by the individual teachers is an 
important part of a valid system. Roster verification enables teachers to confirm their class rosters for 
students that they taught for a particular subject, grade, and year. These linkages, or records of teacher 
responsibility for specific students in specific subjects and grades, are verified by administrators as an 
additional check. The roster verification process also captures different teaching scenarios where 
multiple teachers can share instruction. Verification therefore increases the reliability and accuracy of 
teacher-level analyses. 

For the purposes of Ohio’s teacher-level value-added reports, EVAAS receives teacher identification data 
and student-teacher linkages from both BFK and MCOECN. The roster verification process provides data 
about the percentage of instructional responsibility of each teacher that might be attributed to a 
student.  

The information contained in the student-teacher linkage files includes the following: 

• District IRN 
• District name 
• School IRN 
• School name 

http://education.ohio.gov/Topics/Data/EMIS/EMIS-Documentation/Current-EMIS-Manual


 

 Page 5 

• Teacher-level identification 
• Teacher name  
• Teacher state ID 

• Student linking information, including SSID 
• Subjects 
• Percentage claimed by teacher 

Whenever districts do not participate in roster verification, the teacher-student linkage reported and 
verified through EMIS is sent and used by EVAAS.  

2.5 Principal-Level Information 
EVAAS receives two data files from ODE on individual principals and assistant principals linking each of 
them to their schools. One provides a listing of principals and assistant principals in every school, their 
employment information, and their position start and end dates for that position, reported into EMIS by 
districts, community schools, Joint Vocational School Districts, and Educational Service Centers. The 
other data file provides a listing of principals and assistant principals in every school, their employment 
information, and the school year in which they are reported in that position by districts/community 
schools/JVSDs/ESCs. 

The term “principal” here refers to both assistant principals and principals. They are equivalent for the 
purposes of the calculations that are detailed in the composites section.  

2.6 Data Files by Source 

Table 1: Data Files Received by EVAAS 

Source Data 

Ohio Department of Education Student-level assessment data 

Battelle for Kids Teacher-student linkages 

Management Council Teacher-student linkages 

IBM Student names and SSIDs 
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3 Value-Added Analyses 
As outlined in the introduction, the conceptual explanation of value-added reporting is the following:  

• Growth = current achievement/current results compared to prior achievement/prior results 
with achievement being measured by a quality assessment such as the OSTs. 

In practice, growth must be measured using an approach that is sophisticated enough to accommodate 
many non-trivial issues associated with student testing data. Such issues include students with missing 
test scores, students with different entering achievement, and measurement error in the test. In Ohio, 
EVAAS provides two main categories of value-added models, each comprised of district-, school- and 
teacher-level reports.  

• Multivariate Response Model (MRM) is used for tests given in consecutive grades, such as OST 
Mathematics and Reading assessments in grades 3–8.  

• Univariate Response Model (URM) is used when a test is given in non-consecutive grades, such 
as OST Science assessments in grades 5 and 8 or any end-of-course tests.  

Both models offer the following advantages: 

• The models include students’ testing history without imputing any test scores. 
• The models can accommodate students with missing test scores. 
• The models can accommodate team teaching or other shared instructional practices. 
• The models use multiple years of data to minimize the influence of measurement error. 
• The models can accommodate tests on different scales. 

Each model is described in greater detail below. 

As a result of using multiple years of test scores for each student and including students even if they 
have missing test scores, it is not necessary to make direct adjustments for students’ background 
characteristics. In short, these adjustments are not necessary because each student serves as his or her 
own control. To the extent that socioeconomic and demographic influences persist over time, these 
influences are already represented in the student’s data. As a 2004 study by The Education Trust stated, 
specifically with regards to the SAS EVAAS modeling: 

[I]f a student’s family background, aptitude, motivation, or any other possible factor has 
resulted in low achievement and minimal learning growth in the past, all that is taken into 
account when the system calculates the teacher’s contribution to student growth in the present.  

Source: Carey, Kevin. 2004. “The Real Value of Teachers: Using New Information about Teacher 
Effectiveness to Close the Achievement Gap.” Thinking K-16 8(1):27. 

In other words, while technically feasible, adjusting for student characteristics in sophisticated modeling 
approaches is not necessary from a statistical perspective, and the value-added reporting in Ohio does 
not make any direct adjustments for students’ socioeconomic and demographic characteristics. Through 
this approach, Ohio avoids the problem of building a system that creates differential expectations for 
groups of students based on their backgrounds. 

The value-added reporting in Ohio is available at the district, school, and teacher level. 
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3.1 Multivariate Response Model Reporting for Tests in Consecutive Grades 
EVAAS provides three separate analyses using the multivariate response model (MRM), one each for 
districts, schools, and teachers. The district and school models are essentially the same. They perform 
well with the large numbers of students that are characteristic of districts and most schools. The teacher 
model uses a different approach that is more appropriate with the smaller numbers of students typically 
found in teachers’ classrooms. All three statistical models are known as linear mixed models and can be 
further described as repeated measures models.  

The MRM is a gain-based model, which means that it measures growth between two points in time for a 
group of students. The growth expectation is met when a cohort of students from grade to grade 
maintains the same relative position with respect to statewide student achievement in that year for a 
specific subject and grade. (See “Intra-Year Approach” in Section 4.1.) 

The key advantages of the MRM approach can be summarized as follows: 

• All students with valid data are included in the analyses even if they have missing test scores. 
Students’ testing history is included without imputing any test scores. 

• By including all students in the analyses, even those with a sporadic testing history, it provides 
the most realistic estimate of achievement available. 

• It minimizes the influence of measurement error inherent in academic assessments by using 
multiple data points of student testing history.  

• It allows educators to benefit from all tests even when tests are on differing scales. 
• It accommodates teaching scenarios where more than one teacher has responsibility for a 

student’s learning in a specific subject, grade, and year. 
• It analyzes multiple subjects simultaneously to improve precision and reliability.  

Because of these advantages, the MRM is considered to be one of the most statistically robust and 
reliable approaches. The references below include recent studies by experts from RAND Corporation, a 
non-profit research organization:  

• On the choice of a complex value-added model: McCaffrey, Daniel F., and J.R. Lockwood. 2008. 
“Value-Added Models: Analytic Issues.” Prepared for the National Research Council and the 
National Academy of Education, Board on Testing and Accountability Workshop on Value-Added 
Modeling, Nov. 13-14, 2008, Washington, DC. 

• On the advantages of the longitudinal, mixed model approach: Lockwood, J.R. and Daniel 
McCaffrey. 2007. “Controlling for Individual Heterogeneity in Longitudinal Models, with 
Applications to Student Achievement.” Electronic Journal of Statistics 1:223‐252.  

• On the insufficiency of simple value-added models: McCaffrey, Daniel F., B. Han, and J.R. 
Lockwood. 2008. “From Data to Bonuses: A Case Study of the Issues Related to Awarding 
Teachers Pay on the Basis of the Students' Progress.” Presented at Performance Incentives: 
Their Growing Impact on American K-12 Education, Feb. 28-29, 2008, National Center on 
Performance Incentives at Vanderbilt University.  

Despite such rigor, the MRM model is quite simple conceptually: Did a group of students maintain the 
same relative position with respect to statewide student achievement from one year to the next for a 
specific subject and grade? 
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3.1.1 MRM at the Conceptual Level 
The example data in Figure 1 might help users understand how the MRM works. Assume that 10 
students are given a test in two different years with the results shown in Figure 1. The goal is to measure 
academic growth (gain) from one year to the next. Two simple approaches are to calculate the mean of 
the differences or to calculate the differences of the means. When there are no missing data, these two 
simple methods provide the same answer (5.8 on the left in Figure 1). When there are missing data, 
though, each method provides a different result (6.9 vs. 4.6 on the right in Figure 1). A more 
sophisticated model is needed to address missing data. 

Figure 1: Scores without Missing Data, and Scores with Missing Data 

Student 
Previous 

Score 
Current 
Score Gain  Student 

Previous 
Score 

Current 
Score Gain 

1 51.9 74.8 22.9  1 51.9 74.8 22.9 

2 37.9 46.5 8.6  2  46.5  

3 55.9 61.3 5.4  3 55.9 61.3 5.4 

4 52.7 47.0 -5.7  4  47.0  

5 53.6 50.4 -3.2  5 53.6 50.4 -3.2 

6 23.0 35.9 12.9  6 23.0 35.9 12.9 

7 78.6 77.8 -0.8  7 78.6 77.8 -0.8 

8 61.2 64.7 3.5  8 61.2 64.7 3.5 

9 47.3 40.6 -6.7  9 47.3 40.6 -6.7 

10 37.8 58.9 21.1  10 37.8 58.9 21.1 

Column 
Mean 50.0 55.8 5.8  

Column 
Mean 51.2 55.8 6.9 

Difference between Current and 
Previous Score Means 5.8  

Difference between Current and 
Previous Score Means 4.6 

The MRM uses the correlation between current and previous scores in the non-missing data to estimate 
means for all previous and current scores as if there were no missing data. It does this without explicitly 
imputing values for the missing scores. The difference between these two estimated means is an 
estimate of the average gain for this group of students. In this example, the estimated difference is 5.8. 
Even in a small example such as this, the estimated difference is much closer to the difference with no 
missing data than either measure obtained by the mean of the differences (6.9) or the difference of the 
means (4.6). This method of estimation has been shown, on average, to outperform both of the simple 
methods. 1 This small example only considered two grades and one subject. Larger data sets, such as 

                                                             
1 See, for example, S. Paul Wright, “Advantages of a Multivariate Longitudinal Approach to Educational Value-Added Assessment without 
Imputation,” Paper presented at National Evaluation Institute, 2004. Available online at https://pvaas.sas.com/support/EVAAS-
AdvantagesOfAMultivariateLongitudinalApproach.pdf. 

https://pvaas.sas.com/support/EVAAS-AdvantagesOfAMultivariateLongitudinalApproach.pdf
https://pvaas.sas.com/support/EVAAS-AdvantagesOfAMultivariateLongitudinalApproach.pdf
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those used in actual EVAAS analyses for Ohio, provide better correlation estimates by having more 
student data and more subjects and grades, which in turn provide better estimates of means and gains. 

This small example is meant to illustrate the need for a model that will accommodate incomplete data 
and provide a reliable measure of progress. It represents the concepts of the school and district models. 
The teacher model is slightly more complex, and all models are explained in more detail below (in 
Section 3.1.3). The first step in the MRM is to define the scores that will be used in the model. 

3.1.2 Normal Curve Equivalents 

3.1.2.1 Why EVAAS Uses Normal Curve Equivalents in MRM 
The MRM estimates academic growth as a “gain,” or the difference between two measures of 
achievement from one point in time to the next. For such a difference to be meaningful, the two 
measures of achievement (that is, the two tests whose means are being estimated) must measure 
academic achievement on a common scale. Some test companies supply vertically scaled tests as a way 
to meet this requirement. A reliable alternative when vertically scaled tests are not available is to 
convert scale scores to normal curve equivalents (NCEs). 

NCEs are on a familiar scale because they are scaled to look like percentiles. However, NCEs have a 
critical advantage for measuring growth: they are on an equal-interval scale. This means that for NCEs, 
unlike percentile ranks, the distance between 50 and 60 is the same as the distance between 80 and 90. 
NCEs are constructed to be equivalent to percentile ranks at 1, 50, and 99, with the mean being 50 and 
the standard deviation being 21.063 by definition. Although percentile ranks are usually truncated 
above 99 and below 1, NCEs are allowed to range above 100 and below 0 to preserve their equal-
interval property and to avoid truncating the test scale. See Figure 2 below for an illustration of the 
distribution of test scores, percentiles, and NCEs.  

Figure 2: Percentile and NCE Distributions 

 

In a typical year in Ohio, the average maximum NCE is approximately 125. Truncating these values in the 
model would create an artificial ceiling or floor, which might bias the results of the value-added measure 
for certain types of students forcing the gain to be close to zero or even negative. As a result, the model 
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does not use truncated values. For display purposes in the EVAAS web application, however, NCEs are 
shown as integers from 1-99. 

The NCEs used in EVAAS analyses are based on a reference distribution of test scores in Ohio. The 
reference distribution is the distribution of scores on a state-mandated test for all students in either a 
given year (the base year approach) or in each year (intra-year approach). The base year (set in 2010) 
was previously used in the Ohio MRM analysis, and the intra-year approach was used for the first time in 
the 2014-15 reporting as it can accommodate a change in testing regime when the old test and new test 
are not on the same scale.  

By definition, the mean (or average) NCE score for the reference distribution is 50 for each grade and 
subject. “Growth” is the difference in NCEs from one year and grade to the next in the same subject. The 
growth standard, which represents a “normal” year’s growth, is defined by a value of zero. More 
specifically, it maintains the same position in the reference distribution from one year/grade to the next. 
It is important to reiterate that a gain of zero on the NCE scale does not indicate “no growth.” Rather, 
it indicates that a group of students in a district, school, or classroom has maintained the same 
position in the state distribution from one grade to the next. The expectation of growth can be set 
differently by using a reference distribution to create NCEs or by using each individual year to create 
NCEs. For more on the growth expectation, see Section 4. 

3.1.2.2  How EVAAS Uses Normal Curve Equivalents in MRM 
There are multiple ways of creating NCEs. EVAAS uses a method that does not assume that the 
underlying scale is normal since experience has shown that some testing scales are not normally 
distributed, and this will ensure an equal-interval scale. Table 2 provides an example of the way that 
EVAAS converts scale scores to NCEs.  

The first five columns of Table 2 show an example of a tabulated distribution of test scores from Ohio 
data. The tabulation shows for each possible test score in a particular subject, grade, and year, how 
many students made that score (“Frequency”) and what percentage (“Percent”) that frequency was out 
of the entire student population. (In Table 2, the total number of students is approximately 130,000.) 
Also tabulated are the cumulative frequency (“Cum Freq,” which is the number of students who made 
that score or lower) and its associated percentage (“Cum Pct”). 

The next step is to convert each score to a percentile rank, listed as “Ptile Rank” on the right side of Table 
2. If a particular score has a percentile rank of 48, this is interpreted to mean that 48% of students in the 
population had a lower score and 52% had a higher score. In practice, a non-zero percentage of students 
will receive each specific score; for example, 3.4% of students received a score of 425 in Table 2. The usual 
convention is to consider half of that 3.4% to be “below” and half “above.” Adding 1.7% (half of 3.4%) to 
the 43.5% who scored below the score of 425 produces the percentile rank of 45.2 in Table 2.  
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Table 2: Converting Tabulated Test Scores to NCE Values 

Score Frequency Cum Freq Percent Cum Pct Ptile Rank Z NCE 

418 3,996 48,246 3.1 36.9 35.4 -0.375 42.10 

420 4,265 52,511 3.3 40.2 38.5 -0.291 43.86 

423 4,360 56,871 3.3 43.5 41.8 -0.206 45.66 

425 4,404 61,275 3.4 46.9 45.2 -0.121 47.45 

428 4,543 65,818 3.5 50.4 48.6 -0.035 49.26 

430 4,619 70,437 3.5 53.9 52.1 0.053 51.12 

432 4,645 75,082 3.6 57.5 55.7 0.142 53.00 

NCEs are obtained from the percentile ranks using the normal distribution. Using a table of the standard 
normal distribution (found in many textbooks2) or computer software (for example, a spreadsheet), one 
can obtain the associated Z-score from a standard normal distribution for any given percentile rank. 
NCEs are Z-scores that have been rescaled to have a “percentile-like” scale. Specifically, NCEs are scaled 
so that they exactly match the percentile ranks at 1, 50, and 99. This is accomplished by multiplying each 
Z-score by approximately 21.063 (the standard deviation on the NCE scale) and adding 50 (the mean on 
the NCE scale). 

3.1.3 Technical Description of the Linear Mixed Model and the MRM  
The linear mixed model for district, school, and teacher value-added reporting using the MRM approach 
is represented by the following equation in matrix notation:  

𝑦𝑦 = 𝑋𝑋𝑋𝑋+ 𝑍𝑍𝑍𝑍+ 𝜖𝜖 (1) 

𝑦𝑦 (in the EVAAS context) is the 𝑚𝑚 × 1 observation vector containing test scores (usually NCEs) for all 
students in all academic subjects tested over all grades and years.  

𝑋𝑋 is a known 𝑚𝑚× 𝑝𝑝  matrix which allows the inclusion of any fixed effects.  

𝛽𝛽 is an unknown 𝑝𝑝 × 1 vector of fixed effects to be estimated from the data.  

𝑍𝑍 is a known 𝑚𝑚 × 𝑞𝑞 matrix that allows the inclusion of random effects.  

𝑣𝑣 is a non-observable 𝑞𝑞 × 1 vector of random effects whose realized values are to be estimated from 
the data.  

𝜖𝜖 is a non-observable 𝑚𝑚 × 1 random vector variable representing unaccountable random variation.  

Both 𝑣𝑣 and 𝜖𝜖 have means of zero, that is, 𝐸𝐸(𝑣𝑣 =  0) and 𝐸𝐸(𝜖𝜖 =  0). Their joint variance is given by: 

                                                             
2 See, for example, the inside front cover of William Mendenhall, Richard L. Scheaffer, and Dennis D. Wackerly, Mathematical Statistics with 
Applications (Boston: Duxbury Press, 1986). 
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𝑉𝑉𝑉𝑉𝑉𝑉�𝑣𝑣𝜖𝜖� = �𝐺𝐺 0
0 𝑅𝑅

� (2) 

where 𝑅𝑅 is the 𝑚𝑚 × 𝑚𝑚 matrix that reflects the correlation among the student scores residual to the 
specific model being fitted to the data, and 𝐺𝐺 is the 𝑞𝑞 × 𝑞𝑞 variance-covariance matrix that reflects the 
correlation among the random effects. If (𝑣𝑣, 𝜖𝜖) are normally distributed, the joint density of (𝑦𝑦,𝑣𝑣) is 
maximized when 𝛽𝛽 has value 𝑏𝑏 and 𝑣𝑣 has value 𝑢𝑢 given by the solution to the following equations, 
known as Henderson’s mixed model equations:3 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍+ 𝐺𝐺−1��
𝑏𝑏
𝑢𝑢
�= �𝑋𝑋

𝑇𝑇𝑅𝑅−1𝑦𝑦
𝑍𝑍𝑇𝑇𝑅𝑅−1𝑦𝑦

� (3) 

Let a generalized inverse of the above coefficient matrix be denoted by 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍+𝐺𝐺−1�
−

= �𝐶𝐶11 𝐶𝐶12
𝐶𝐶21 𝐶𝐶22

�= 𝐶𝐶 (4) 

If 𝐺𝐺 and 𝑅𝑅 are known, then some of the properties of a solution for these equations are: 

1. Equation (5) below provides the best linear unbiased estimator (BLUE) of the set of estimable 
linear function, 𝐾𝐾𝑇𝑇𝛽𝛽, of the fixed effects. The second equation (6) below represents the variance 
of that linear function. The standard error of the estimable linear function can be found by 
taking the square root of this quantity. 

𝐸𝐸(𝐾𝐾𝑇𝑇𝛽𝛽) = 𝐾𝐾𝑇𝑇𝑏𝑏 (5) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇𝑏𝑏) = (𝐾𝐾𝑇𝑇)𝐶𝐶11𝐾𝐾 (6) 

2. Equation (7) below provides the best linear unbiased predictor (BLUP) of 𝑣𝑣.  

𝐸𝐸(𝑣𝑣|𝑢𝑢) = 𝑢𝑢 (7) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢− 𝑣𝑣) = 𝐶𝐶22 (8) 

 where 𝑢𝑢 is unique regardless of the rank of the coefficient matrix. 

3. The BLUP of a linear combination of random and fixed effects can be given by equation (9) 
below provided that 𝐾𝐾𝑇𝑇𝛽𝛽 is estimable. The variance of this linear combination is given by 
equation (10).  

𝐸𝐸(𝐾𝐾𝑇𝑇𝛽𝛽 +𝑀𝑀𝑇𝑇𝑣𝑣 |𝑢𝑢) = 𝐾𝐾𝑇𝑇𝑏𝑏 +𝑀𝑀𝑇𝑇𝑢𝑢 (9) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇(𝑏𝑏−  𝛽𝛽) +𝑀𝑀𝑇𝑇(𝑢𝑢 − 𝑣𝑣)) = (𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝐶𝐶(𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝑇𝑇 (10) 

                                                             
3 Sanders, William L., Arnold M. Saxton, and Sandra P. Horn. 1997. “The Tennessee Value-Added Assessment System: A Quantitative, 
Outcomes-Based Approach to Educational Assessment.” In Grading Teachers, Grading Schools, ed. Jason Millman, 137-162. Thousand Oaks, CA: 
Sage Publications. 
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4. With 𝐺𝐺 and 𝑅𝑅 known, the solution for the fixed effects is equivalent to generalized least squares, 
and if 𝑣𝑣 and 𝜖𝜖 are multivariate normal, then the solutions for 𝛽𝛽 and 𝑣𝑣 are maximum likelihood. 

5. If 𝐺𝐺 and 𝑅𝑅 are not known, then as the estimated 𝐺𝐺 and 𝑅𝑅 approach the true 𝐺𝐺 and 𝑅𝑅, the 
solution approaches the maximum likelihood solution. 

6. If 𝑣𝑣 and 𝜖𝜖 are not multivariate normal, then the solution to the mixed model equations still 
provides the maximum correlation between 𝑣𝑣 and 𝑢𝑢. 

3.1.3.1 District and School Level 
The district and school MRMs do not contain random effects; consequently, the 𝑍𝑍𝑍𝑍 term drops out in 
the linear mixed model. The 𝑋𝑋 matrix is an incidence matrix (a matrix containing only zeros and ones) 
with a column representing each interaction of school (in the school model), subject, grade, and year of 
data. The fixed-effects vector 𝛽𝛽 contains the mean score for each school, subject, grade, and year, with 
each element of 𝛽𝛽 corresponding to a column of 𝑋𝑋. Since MRMs are generally run with each school 
uniquely defined across districts, there is no need to include district in the model. 

Unlike the case of the usual linear model used for regression and analysis of variance, the elements of 𝜖𝜖 
are not independent. Their interdependence is captured by the variance-covariance matrix, also known 
as the 𝑅𝑅 matrix. Specifically, scores belonging to the same student are correlated. If the scores in 𝑦𝑦 are 
ordered so that scores belonging to the same student are adjacent to one another, then the 𝑅𝑅 matrix is 
block diagonal with a block, 𝑅𝑅𝑖𝑖, for each student. Each student’s 𝑅𝑅𝑖𝑖 is a subset of the “generic” 
covariance matrix 𝑅𝑅0 that contains a row and column for each subject and grade. Covariances among 
subjects and grades are assumed to be the same for all years (technically, all cohorts), but otherwise the 
𝑅𝑅0 matrix is unstructured. Each student’s 𝑅𝑅𝑖𝑖 contains only those rows and columns from 𝑅𝑅0 that match 
the subjects and grades for which the student has test scores. In this way, the MRM is able to use all 
available scores from each student. 

Algebraically, the district MRM is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (11) 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the test score for the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎ grade during the 
𝑙𝑙𝑡𝑡ℎ year in the 𝑑𝑑𝑡𝑡ℎ district. 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the estimated mean score for this particular district, subject, grade 
and year. 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random deviation of the 𝑖𝑖𝑡𝑡ℎ student’s score from the district mean. 

The school MRM is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (12) 

This is the same as the district analysis with the addition of the subscript 𝑠𝑠 representing 𝑠𝑠𝑡𝑡ℎ school. 

The MRM uses multiple years of student testing data to estimate the covariances that can be found in 
the matrix 𝑅𝑅0. This estimation of covariances is done within each level of analyses and can result in 
slightly different values within each analysis. 

Solving the mixed model equations for the district or school MRM produces a vector 𝑏𝑏 that contains the 
estimated mean score for each school (in the school model), subject, grade, and year. To obtain a value-
added measure of average student growth, a series of computations can be done using the students 
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from a school in a particular year and their prior and current testing data. The model produces means in 
each subject, grade, and year that can be used to calculate differences in order to obtain gains. Because 
students might change schools from one year to the next (in particular when transitioning from 
elementary to middle school, for example), the estimated mean score for the prior year/grade uses 
students that existed in the current year of that school. Therefore, mobility is taken into account within 
the model. Growth of students is computed using all students in each school including those that might 
have moved buildings from one year to the next.  

The computation for obtaining a growth measure can be thought of as a linear combination of fixed 
effects from the model. The best linear unbiased estimate for this linear combination is given by 
equation (5). The growth measures are reported along with standard errors, and these can be obtained 
by taking the square root of equation (6). 

Furthermore, in addition to reporting the estimated mean scores and mean gains produced by these 
models, the value-added reporting includes (1) cumulative gains across grades (for each subject and 
year), (2) multi-year up to 3-average gains (for each subject and grade), and (3) composite gains across 
subjects. These composites are explained in more detail in Section 6. In general, these are all different 
forms of linear combinations of the fixed effects, and their estimates and standard errors are computed 
in the same manner described above. 

3.1.3.2 Teacher-Level 
The teacher estimates use a more conservative statistical process to lessen the likelihood of 
misclassifying teachers. Each teacher is assumed to be the state average in a specific year, subject, and 
grade until the weight of evidence pulls him/her either above or below that state average. Furthermore, 
the teacher model is a “layered” model, which means that:  

• Students’ performance with both their current and previous teacher effects are incorporated.  
• Each teacher estimate accounts for multiple years of the students’ testing data. 
• The percentage of instructional responsibility the teacher has for each student is used.  
• When next year’s student scores are obtained, the previous year’s teacher estimates can be 

refined with this additional information about student performance. 

Each element of the statistical model for teacher value-added modeling provides a layer of protection 
against misclassifying each teacher estimate. 

To allow for the possibility of many teachers with relatively few students per teacher, MRM enters 
teachers as random effects via the 𝑍𝑍 matrix in the linear mixed model. The 𝑋𝑋  matrix contains a column 
for each subject, grade, and year, and the 𝑏𝑏 vector contains an estimated state mean score for each 
subject, grade, and year. The 𝑍𝑍 matrix contains a column for each subject, grade, year, and teacher, and 
the 𝑢𝑢 vector contains an estimated teacher effect for each subject, grade, year, and teacher. The 𝑅𝑅 
matrix is as described above for the district or school model. The 𝐺𝐺 matrix contains teacher variance 
components with a separate unique variance component for each subject, grade, and year. To allow for 
the possibility that a teacher might be very effective in one subject and very ineffective in another, the 𝐺𝐺 
matrix is constrained to be a diagonal matrix. Consequently, the 𝐺𝐺 matrix is a block diagonal matrix with 
a block for each subject/grade/year. Each block has the form 𝜎𝜎2𝑗𝑗𝑗𝑗𝑗𝑗𝐼𝐼 where 𝜎𝜎2𝑗𝑗𝑗𝑗𝑗𝑗 is the teacher variance 
component for the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎ grade in the 𝑙𝑙𝑡𝑡ℎ year, and 𝐼𝐼 is an identity matrix. 
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Algebraically, the teacher model is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇𝑗𝑗𝑗𝑗𝑗𝑗 +  ��  
 

𝑘𝑘∗≤𝑘𝑘

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗𝑡𝑡  ×  𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗𝑡𝑡

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗

𝑡𝑡=1

�+ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (13) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the test score for the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎgrade in the 𝑙𝑙𝑡𝑡ℎ year. 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗𝑡𝑡 is the 
teacher effect of the 𝑡𝑡𝑡𝑡ℎ teacher on the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in grade 𝑘𝑘∗ in year 𝑙𝑙∗. The 
complexity of the parenthesized term containing the teacher effects is due to two factors. First, in any 
given subject, grade, and year, a student might have more than one teacher. The inner (rightmost) 
summation is over all the teachers of the 𝑖𝑖𝑡𝑡ℎ student in a particular subject, grade, and year. 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗𝑡𝑡 is 
the effect of the 𝑡𝑡𝑡𝑡ℎ teacher. 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗𝑡𝑡 is the fraction of the 𝑖𝑖𝑡𝑡ℎ student’s instructional time claimed by the 
𝑡𝑡𝑡𝑡ℎ teacher. Second, as mentioned above, this model allows teacher effects to accumulate over time. 
That is, a teacher effect depends on students’ performance in the current subject, grade, and year as 
well as on the accumulated knowledge and skills acquired under previous teachers. The outer (leftmost) 
summation accumulates teacher effects not only for the current (subscripts 𝑘𝑘 and 𝑙𝑙) but also over 
previous grades and years (subscripts 𝑘𝑘∗ and 𝑙𝑙∗) in the same subject. Because of this accumulation of 
teacher effects, this type of model is often called the “layered” model. 

In contrast to the model for many district and school estimates, the value-added estimates for teachers 
are not calculated by taking differences between estimated mean scores to obtain mean gains. Rather, 
this teacher model produces teacher “effects” (in the 𝑢𝑢 vector of the linear mixed model). It also 
produces state-level mean scores (for each year, subject and grade) in the fixed-effects vector 𝑏𝑏. 
Because of the way the 𝑋𝑋 and 𝑍𝑍 matrices are encoded, in particular because of the “layering” in 𝑍𝑍, 
teacher gains can be estimated by adding the teacher effect to the state mean gain. That is, the 
interpretation of a teacher effect in this teacher model is as a gain expressed as a deviation from the 
average gain for the state in a given year, subject, and grade. 

Table 3 illustrates how the 𝑍𝑍 matrix is encoded for three students who have three different scenarios of 
teachers during grades 3, 4, and 5 in two subjects, Math (M) and Reading (R). Teachers are identified by 
the letters A–F.  

Tommy’s teachers represent the conventional scenario. Tommy is taught by a single teacher in both 
subjects each year (teachers A, C, and E in grades 3, 4, and 5, respectively). Notice that in Tommy’s 𝑍𝑍 
matrix rows for grade 4 there are ones (representing the presence of a teacher effect) not only for 
fourth-grade teacher C but also for third-grade teacher A. This is how the “layering” is encoded. 
Similarly, in the grade 5 rows, there are ones for grade 5 teacher E, grade 4 teacher C, and grade 3 
teacher A. 

Susan is taught by two different teachers in grade 3: teacher A for Math and teacher B for Reading. In 
grade 4, Susan had teacher C for Reading. For some reason, in grade 4 no teacher claimed Susan for 
Math even though Susan had a grade 4 Math test score. This score can still be included in the analysis by 
entering zeros into the Susan’s 𝑍𝑍 matrix rows for grade 4 Math. In grade 5, on the other hand, Susan had 
no test score in Reading. This row is completely omitted from the 𝑍𝑍 matrix. There will always be a 𝑍𝑍 
matrix row corresponding to each test score in the 𝑦𝑦 vector. Since Susan has no entry in 𝑦𝑦 for grade 5 
Reading, there can be no corresponding row in 𝑍𝑍. 



 

 Page 16 

Eric’s scenario illustrates team teaching. In grade 3 Reading, Eric received an equal amount of 
instruction from teachers A and B. The entries in the 𝑍𝑍 matrix indicate each teacher’s contribution, 0.5 
for each teacher. In grade 5 Math, however, Eric was taught by both teachers E and F, but they did not 
make an equal contribution. Teacher E claimed 80% responsibility, and teacher F claimed 20%. 

Because teacher effects are treated as random effects in this approach, their estimates are obtained by 
shrinkage estimation, technically known as best linear unbiased prediction or as empirical Bayesian 
estimation. This means that a priori a teacher is considered “average” (with a teacher effect of zero) 
until there is sufficient student data to indicate otherwise. This method of estimation protects against 
false positives (teachers incorrectly evaluated as most effective or least effective), particularly in the 
case of teachers with few students so that random measurement error in the tests scores does not 
unduly affect their value-added measures. 

From the computational perspective, the teacher gain can be defined as a linear combination of both 
fixed effects and random effects and is estimated by the model using equation (9). The variance and 
standard error can be found using equation (10).  

Similar to the district and school reporting, the teacher model provides estimated mean gains as well as 
(1) cumulative gains across grades (for each subject and year), (2) multi-year-average gains (for each 
subject and grade), and optionally (3) composite gains across subjects. All quantities can be described by 
linear combinations of the fixed and random effects and are found using the equations mentioned 
above. 
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Table 3: Encoding the Z Matrix 

      Teachers 

      Third Grade   Fourth Grade   Fifth Grade 

      A   B   C   D   E   F 

Student Grade Subjects M R   M R   M R   M R   M R   M R 

Tommy 3 M 1 0   0 0   0 0   0 0   0 0   0 0 

    R 0 1   0 0   0 0   0 0   0 0   0 0 

  4 M 1 0  0 0  1 0  0 0  0 0  0 0 

    R 0 1   0 0   0 1   0 0   0 0   0 0 

  5 M 1 0  0 0  1 0  0 0  1 0  0 0 

    R 0 1   0 0   0 1   0 0   0 1   0 0 

Susan 3 M 1 0   0 0   0 0   0 0   0 0   0 0 

    R 0 0   0 1   0 0   0 0   0 0   0 0 

  4 M 1 0  0 0  0 0  0 0  0 0  0 0 

    R 0 0   0 1   0 1   0 0   0 0   0 0 

  5 M 1 0  0 0  0 0  0 0  0 0  1 0 

Eric 3 M 1 0   0 0   0 0   0 0   0 0   0 0 

   R 0 0.5  0 0.5  0 0  0 0  0 0  0 0 

  4 M 1 0   0 0   0 0   1 0   0 0   0 0 

   R 0 0.5  0 0.5  0 0  0 1  0 0  0 0 

  5 M 1 0   0 0   0 0   1 0   0.8 0   0.2 0 

    R 0 0.5   0 0.5   0 0   0 1   0 1   0 0 
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3.1.4 Where the MRM is Used in Ohio 
The MRM is used with the OST in Math and Reading in grades 3–8. All data is used in each of the three 
separate analyses to obtain value-added measures at the district, school, and teacher level in grades 4–
8.  

In Ohio, multiple MRM analyses are run using the accountable district and school as well as the tested 
district and school information. For a detailed description of what is meant by accountable district and 
school in Ohio, see http://education.ohio.gov/getattachment/Topics/Data/Report-Card-
Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx. 

The following analyses are done using the MRM methodology: 

• Accountable district-level analyses  
• Overall 
• Gifted students 
• Lowest 20% of students 
• Students with disabilities 
• ESSA student groups, including White, Black, Asian/Pacific Islander, American Indian, Multi-

Racial, Hispanic, EL, and ED 
• Accountable school-level analyses 

• Overall 
• Gifted students 
• Lowest 20% of students 
• Students with disabilities 
• ESSA student groups, including White, Black, Asian/Pacific Islander, American Indian, Multi-

Racial, Hispanic, EL, and ED 
• Tested district-level analyses 

• Overall 
• Tested school-level analyses 

• Overall 
• STEM provider analysis 
• Teacher-level analysis 
• Dropout recovery analysis 

The MRM methodology provides estimated measures of progress for up to three years in each subject, 
grade, and year for district, school, and teacher analyses provided that the minimum student 
requirements are met. For each subject, measures are also given across grades, across years (three-year 
averages), and combined across years and grades. In addition, composites of Math and Reading for each 
grade and year, across grades, across years (up to three-year averages), and across grades and years are 
computed for the different analyses. The composites for across years or across grades and years at the 
district and school level include both OST Math and Reading, even if one of those subjects does not have 
a value-added measure in the current (most recent analysis) year. Note that reporting based on the EL 
student group analysis is not subject-specific.  

http://education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx
http://education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx
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At the teacher level, in addition to value-added measures for each OST subject, grade, and year, a multi-
year trend for each subject and grade for up to three years and a composite of Math and Reading across 
grades and years (up to two years) are also computed and displayed on the EVAAS web application 
available at https://ohiova.sas.com/.  

For more information about these composites and multi-year averages, see Section 6. 

3.1.5 Students Included in the Analysis 
All students are included in these analyses if they have scores that can be used. All available OST Math 
and Reading results for each student are incorporated into the models. Some student scores might be 
excluded if they are flagged as outliers or due to the other business rules described in Section 8.3. 
Because this model follows students from one grade to the next and measures growth through the 
movement from one grade to the next, the model assumes typical grade patterns for students. Students 
with non-traditional patterns, such as those who have been retained in a grade or skipped a grade, are 
treated as separate students in the model. In other words, these students are still included in the model, 
but the student is treated as separate students in different cohorts when these non-traditional patterns 
occur. This process occurs separately by subject since some students can be accelerated in one subject 
and not the other.  

3.1.5.1 Overall Accountable Districts and Schools 
The analyses used to produce scores used for school and district report cards are all based on the 
business rules governing the accountability system. For more information about the “Full Academic 
Year/Where Kids Count Rules,” see http://education.ohio.gov/getattachment/Topics/Data/Report-Card-
Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx. 

For purposes of diagnostic interpretation, the EVAAS web application available to educators provides 
reports that are not based on the accountability rules but only where students took their tests. In most 
cases, the “accountable” district and school are the same as the “tested” district and school. However, 
there are some cases where these are different. For example, there could be students with disabilities 
who are held accountable to a different school or only the district level and not the school where they 
might have tested. There are also students who are accountable to the district or the state for various 
purposes. 

3.1.5.2 Gifted Students for Districts and Schools 
The gifted student analysis pertains only to those students who are included in the “accountable 
student” set as described in 3.1.5.1. Students are included in the Math analysis if they are either 
identified as gifted in Math or superior cognitive. In the Math analysis, students’ prior and current Math 
and Reading test scores are included. Similarly, for Reading, students are included who are identified as 
gifted in Reading or superior cognitive. All other Math and Reading scores from those students are 
included in the Reading analysis. Value-added measures are calculated for this subset of students for 
each district and school that meet the minimum requirements of student data. In this student group 
value-added computation, the expectation of growth is defined the same as in the overall students’ 
analysis. In other words, the expectation of growth is based on all students. Furthermore, the estimated 
covariance parameters are used from the overall students’ analysis when calculating the value-added 
measures. 

https://ohiova.sas.com/
http://education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx
http://education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx
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3.1.5.3 Students with Disabilities for Districts and Schools 
The students with disabilities analysis pertains only to those students who are included in the 
“accountable student” set as described in 3.1.5.1. Students are included in the analysis if they are 
denoted as students with disabilities as recorded by the disability flag in EMIS. Value-added measures 
are calculated for this subset of students for each district and school that meet the minimum 
requirements of student data. In this student group value-added computation, the expectation of 
growth is defined the same as in the overall students’ analysis. In other words, the expectation of 
growth is based on all students. Furthermore, the estimated covariance parameters are used from the 
overall students’ analysis when calculating the value-added measures. 

3.1.5.4 Lowest 20% Achievement for Districts and Schools 
The lowest 20% achievement student analysis pertains only to those students who are included in the 
“accountable student” set as described in 3.1.5.1. Students are included in the Math analysis if the 
average of their current year and grade Math score and prior year and grade Math score is in the 
bottom 20% across the state. This bottom 20% is defined in the current (most recent analysis) year for 
each grade using the average of the current and prior year and grade scores. In the Math analysis, these 
students’ prior and current Math and Reading test scores are included. Similarly, for Reading, students 
are included that are in the lowest 20% of statewide student achievement as defined above with the 
current and prior year and grade scores. All other Math and Reading scores from those students are 
included in the Reading analysis. Value-added measures are calculated for this subset of students for 
each district and school that meet the minimum requirements of student data. In this particular value-
added computation, the expectation of growth is defined the same as in the overall students’ analysis. 
In other words, the expectation of growth is based on all students. Furthermore, the estimated 
covariance parameters are used from the overall students’ analysis when calculating the value-added 
measures. 

For example, a student’s grade 5 OST Math score from last year and grade 6 OST Math score from this 
year would be used to create his or her average Math score. Similarly, the student’s grade 5 OST 
Reading score from last year and grade 6 OST Reading score from this year would be used to create his 
or her average Reading score. Students who do not have both scores in consecutive grades for a 
particular subject do not have an average and are not included. For each grade in a particular subject, 
the cut score is identified such that at least 20% of the students have an average score below that cut 
score. These are the students whose scores will be included in the value-added analysis for low-
achieving students for that subject. If a student’s average Math score is in the lowest 20% for Math 
while his or her average Reading score is not in the lowest 20% for Reading, the value-added analysis for 
Math will include both Math and Reading scores from the current and prior years. However, the student 
is not included in the analysis for Reading. If a student is included in that subject, then the student’s 
current year and prior year scores from Math and Reading are included in the modeling for that subject. 

3.1.5.5 ESSA Accountability Student Groups for Districts and Schools  
Ohio uses subgroup-level value-added measures in their federal accountability system. The subgroups 
include White, Black, Asian/Pacific Islander, American Indian, Multi-Racial, Hispanic, EL, and ED. In each 
subgroup value-added computation, the expectation of growth is defined the same as in the overall 
students’ analysis. In other words, the expectation of growth is based on all students. Furthermore, the 
estimated covariance parameters are used from the overall students’ analysis when calculating the 
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value-added measures. These measures are provided using the OST subjects with a composite across 
Math in grades 4–8 and Reading in grades 4–8. As with the regular model, student group value-added 
measures require six students in each subject and grade to be created.  

3.1.5.6 Community School Closure 
The community school closure analyses utilize all students that are accountable to that community school 
that have been at that same community school for at least two years in a row. If a student has been 
accountable to the school for the first time in a given year, then they are excluded from the analyses.  

3.1.5.7 Teacher-Level 
The Teacher Value-Added reports use all available Math and Reading test scores for each individual 
student linked to a teacher through the Ohio linkage roster verification process unless a student or a 
student test score meet certain criteria for exclusion. 

Students are excluded from the teacher analysis if the students have more absences than an amount 
prescribed by law, which is currently set at 45 excused or unexcused days. (See ORC 3319.112(A)(1)(b).) 
ODE provides EVAAS with a file that flags students who should be excluded based on that legislative 
action. Some student scores might also be excluded if they were flagged as outliers. (See Section 8.3.8.)  

3.1.6 Minimum Number of Students for Reporting 

3.1.6.1 Districts and Schools 
To ensure that estimates are reliable, the minimum number of students required to report an estimated 
mean NCE score for a school or district in a specific subject, grade, and year is six. 

To report an estimated NCE gain for a school or district in a specific subject, grade, and year, there are 
additional requirements: 

• There must be at least six students who are associated with the school or district in the subject, 
grade, and year. This association could mean they were tested at the school or district or 
accountable to that school or district depending on what analysis is being conducted. 

• There is at least one student at the school or district who has a “simple gain,” which is based on 
a valid test score in the current year and grade as well as the prior year and grade in the same 
subject. 

• Of those students who are associated with the school or district in the current year and grade, 
there must be at least six students in each subject, grade, and year in order for that subject, 
grade, and year to be used in the gain calculation.  

• The same requirements described above exist for individual subgroup measures when only 
looking at students in that specific subgroup. 

For example, to report an estimated NCE gain for school A in OST Math grade 5 for this year, there must 
be the following requirements: 

• There must be at least six fifth-grade students with an OST Math grade 5 score at school A for 
this year.  

• At least one of the fifth-grade students at school A this year must have an OST Math grade 5 
score from this year and an OST Math grade 4 score from last year. 
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• Of the fifth-grade students at school A this year in all subjects, not just Math, there must be at 
least six students with an OST Math grade 4 score from last year. 

These requirements apply to both overall and student group measures for districts and schools. 

3.1.6.2 Teacher-Level 
The teacher-level value-added model includes teachers who are linked to at least six students with a 
valid test score in the same subject and grade. To clarify, this means that the teachers are included in 
the analysis even if they do not receive a report due to the other requirements. In other words, this 
requirement does not consider the percentage of instructional time that the teacher spends with each 
student in a specific subject and grade. 

However, to receive a Teacher Value-Added report for a particular year, subject, and grade, there are 
two additional requirements. First, a teacher must have at least six Full Year Equivalent (FYE) students in 
a specific subject, grade, and year. The teacher’s number of FYE students is based on the number of 
students linked to that teacher and the percentage of instructional time the teacher has for each 
student. For example, if a teacher taught 10 students for 50% of their instructional time, then the 
teacher’s FYE number of students would be five, and the teacher would not receive a Teacher Value-
Added report. If another teacher taught 12 students for 50% of their instructional time, then that 
teacher would have six FYE students and would receive a Teacher Value-Added report. The instructional 
time attribution is obtained from the linkage roster verification process that is used in Ohio. This 
information is in the files sent to EVAAS described in Section 2. As the second requirement, the teacher 
must be linked to at least five students with prior test score data in the same subject, and the test data 
may come from any prior grade so long as they are part of the student’s regular cohort. (This means if a 
student repeats a grade, then the prior test data would not apply as the student has started a new 
cohort.) One of these five students must have a “gain,” meaning the same subject prior test score must 
come from the immediate prior year and prior grade. 

The process for creating an accurate link between students and teachers (roster verification) allows 
teachers and principals to review the attribution used in the EVAAS reports. For more information about 
teacher roster verification, see http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-
System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-
Measure/Value-Added-Roster-Verification. 

3.1.7 Dropout Recovery  
Growth measures are required for dropout recovery programs, and given the unique nature of student 
enrollment, student grade, and student testing in these programs, ODE has customized the value-added 
modeling and data inputs for a more meaningful growth measure. This analysis uses the school MRM 
methodology and is provided for the 68 schools and 15,000 students participating in these programs. It 
uses the same business rules described above, but there are a few additional business rules for this 
analysis that are described here.  

3.1.7.1 Data Inputs 
At the dropout recovery programs, students take assessments upon entering the program and again 
after they have received at least 84 days of instruction. 

http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-Measure/Value-Added-Roster-Verification
http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-Measure/Value-Added-Roster-Verification
http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-Measure/Value-Added-Roster-Verification
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The tests used in this analysis were selected by ODE for use in this project. One property of those 
assessments is that they are computer adaptive since the grade level can be difficult to determine for all 
students in the dropout recovery programs. More information about these assessments is here.  

Students are only included in the model if they have a test at program entry and a test after they have 
received at least 84 days of instruction. These tests could include a Math and/or Reading assessment. 
The student only needs one subject at program entry and one subject after 84 days of instruction to be 
included, and those could be different subjects. If the students have multiple scores in the same subject 
at the time of program entry or after at least 84 days of instruction, then the lowest score would be 
used from the time of program entry, and the highest score after program entry would be used. If there 
are multiple scores with the same highest test score after program entry, then the earliest would be 
used that is after the 84 days of instruction from program entry.  

3.1.7.2 Modeling Approach 
The value-added model for dropout recovery programs is similar to the MRM described in this section. 
Modifications to the standard approach are described below.  

As a first step, the distribution of scores for a subject and test window are mapped to a Normal Curve 
Equivalent distribution using the norm data provided by the test vendor. This norm information is from 
a typical 10th grader at the fourth and 17th weeks of school. This approach does not assume anything 
about achievement of individuals included in the analysis, it only puts them on a referenced curve of 
achievement to be able to compare their scores over time with an equal expectation of growth. The 
average score for the first test of a specific program is compared to its average score for the second test. 
The growth standard (or expectation) is that students will maintain their achievement levels between 
the two tests relative to the norm referenced population, and the growth measure is the difference 
between the two achievement levels. Prior to the 2018-19 reporting, the norm represented a complete 
school year rather than the 13-week period used in this year’s reporting. As is the case with the OSTs, 
the MRM for dropout recovery programs provides the growth measure and its standard error for a 
particular test, and these will be used to calculate a growth index as described in Section 5 on page 33. 
As stated above, it is difficult to determine the grade of an individual student in these programs, so the 
normed reference group assumes 10th grade for all students in this analysis. Multi-year growth measures 
are reported where sufficient data exist using the reported growth measures from prior years. 

The difference in the interpretation from the OST-based growth measure is that the non-dropout 
recovery schools are measuring whether students maintained their same relative position in the 
distribution of statewide student achievement from one year to the next. The dropout recovery schools 
are using a national norm assessment and measuring whether students maintained their same relative 
position in that national norm referenced group from the initial test at the time of program entry to the 
second assessment at least 13 weeks later.  

3.2 Univariate Response Model (URM) for Tests in Non-Consecutive Grades 
Tests that are not given for consecutive years require a different modeling approach from the MRM, and 
this modeling approach is called the univariate response model (URM). The statistical model can also be 
classified as a linear mixed model and can be further described as an analysis of covariance (ANCOVA) 
model. The URM is a regression-based model, which measures the difference between students’ 
predicted scores for a particular subject and year with their observed scores. The growth expectation is 

http://education.ohio.gov/Topics/Community-Schools/Drop-Out-Prevention-and-Recovery/Dropout-Prevention-and-Recovery-FAQs


 

 Page 24 

met when students with a district, school, or teacher made the same amount of progress as students in 
the average district, school, or teacher with the state for that same year, subject, and grade. If all 
teachers were not administering a particular test in the state, then it would be compared to the average 
of those teachers with students taking that assessment.  

The key advantages of the URM approach can be summarized as follows: 

• It does not require students to have all predictors or the same set of predictors as long as a 
student has at least three prior test scores in any subject and grade. 

• It minimizes the influence of measurement error by using multiple years of data for an individual 
student. Analyzing all subjects simultaneously increases the precision of the estimates. 

• It allows educators to benefit from all tests, even when tests are on differing scales. 
• It accommodates teaching scenarios where more than one teacher has responsibility for a 

student’s learning in a specific subject, grade, and year. 

3.2.1 URM at the Conceptual Level 
In Ohio, URM value-added reporting is available for the OST Science tests in grades 5 and 8, OST Social 
Studies tests in grade 6 (2016-17 only), OST Algebra I, Mathematics I and II, Geometry, and ELA I and II at 
the district, school, and teacher levels. URM value-added reporting for American Government, American 
History and Biology are available for teachers only. 

The URM is run for each individual year, subject, and grade (if relevant). Consider all students who took 
grade 8 Science in a given year. Those students are connected to all prior testing history (all grades, 
subjects, and years), and the relationship between the observed grade 8 Science scores with all prior 
OST scores is examined. It is important to note that some prior test scores are going to have a greater 
relationship to the score in question than others. For example, it is likely that prior Science tests will 
have a greater relationship with Science than prior Reading scores. However, the other scores still have 
a statistical relationship. 

Once that relationship has been defined, a predicted score can be calculated for each individual student 
based on his or her own prior testing history. Of course, some prior scores will have more influence than 
others in predicting certain scores based on the observed relationship across the state or testing pool in 
a given year. With each predicted score based on a student’s prior testing history, this information can 
be aggregated to the district, school, or teacher level. The predicted score can be thought of as the 
entering achievement of a student.  

The measure of growth is a function of the difference between the observed (most recent) scaled scores 
and predicted scaled scores of students associated with each district, school, or teacher. If students at a 
school typically outperform their individual growth expectation, then that school will likely have a larger 
value-added measure. Zero is defined as the average district, school, or teacher in terms of the average 
progress, so if every student obtained their predicted score, a district, school, or teacher would likely 
receive a value-added measure close to zero. A negative or zero value does not mean “zero growth” 
since this is all relative to what was observed in the state (or pool) that year. 
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3.2.2 Technical Description of the District, School, and Teacher Models 
The URM has similar models for districts and schools and a slightly different model for teachers that 
allows multiple teachers to share instructional responsibility. The approach is described briefly below, 
with more details following. 

• The score to be predicted serves as the response variable (𝑦𝑦, the dependent variable). 
• The covariates (𝑥𝑥s, predictor variables, explanatory variables, independent variables) are scores 

on tests the student has already taken. 
• The categorical variable (class variable, factor) are the teacher(s) from whom the student 

received instruction in the subject, grade, and year of the response variable (𝑦𝑦).  

Algebraically, the model can be represented as follows for the 𝑖𝑖𝑡𝑡ℎ student when there is no team 
teaching. 

𝑦𝑦𝑖𝑖 =  𝜇𝜇𝑦𝑦 +  𝛼𝛼𝑗𝑗 +  𝛽𝛽1(𝑥𝑥𝑖𝑖1 − 𝜇𝜇1)+ 𝛽𝛽2(𝑥𝑥𝑖𝑖2− 𝜇𝜇2)+ ⋯+  𝜖𝜖𝑖𝑖 (14) 

In the case of team teaching, the single 𝛼𝛼𝑗𝑗  is replaced by multiple αs, each multiplied by an appropriate 
weight, similar to the way this is handled in the teacher MRM in equation (13). The 𝜇𝜇 terms are means 
for the response and the predictor variables. 𝛼𝛼𝑗𝑗  is the teacher effect for the 𝑗𝑗𝑡𝑡ℎ teacher—the teacher 
who claimed responsibility for the 𝑖𝑖𝑡𝑡ℎ student. The 𝛽𝛽 terms are regression coefficients. Predictions to 
the response variable are made by using this equation with estimates for the unknown parameters (𝜇𝜇s, 
𝛽𝛽s, and sometimes 𝛼𝛼𝑗𝑗 ). The parameter estimates (denoted with “hats,” e.g., 𝜇̂𝜇, 𝛽̂𝛽) are obtained using all 
students that have an observed value for the specific response and have three predictor scores. The 
resulting prediction equation for the 𝑖𝑖𝑡𝑡ℎ student is as follows: 

𝑦𝑦�𝑖𝑖 =  𝜇̂𝜇𝑦𝑦 +  𝛽̂𝛽1(𝑥𝑥𝑖𝑖1 −  𝜇̂𝜇1) + 𝛽̂𝛽2(𝑥𝑥𝑖𝑖2 − 𝜇̂𝜇2) +⋯ (15) 

Two difficulties must be addressed in order to implement the prediction model. First, not all students 
will have the same set of predictor variables due to missing test scores. Second, the estimated 
parameters are pooled-within teacher. The strategy for dealing with missing predictors is to estimate 
the joint covariance matrix (call it 𝐶𝐶) of the response and the predictors. Let 𝐶𝐶 be partitioned into 
response (𝑦𝑦) and predictor (𝑥𝑥) partitions, that is, 

𝐶𝐶 = �
𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦
𝑐𝑐𝑥𝑥𝑥𝑥 𝐶𝐶𝑥𝑥𝑥𝑥

� (16) 

Note that C in equation (16) is not the same as C in equation (4). This matrix is estimated using the 
Expectation Maximization algorithm for estimating covariance matrices in the presence of missing data 
provided by the Multiple Imputation procedure in SAS/STAT® (although no imputation is actually used). 
Only students who had a test score for the response variable in the most recent year and who had at 
least three predictor variables are included in the estimation. Given such a matrix, the vector of 
estimated regression coefficients for the projection equation (15) can be obtained as: 

𝛽̂𝛽 =  𝐶𝐶𝑥𝑥𝑥𝑥−1𝑐𝑐𝑥𝑥𝑥𝑥 (17) 

This allows one to use whichever predictors a student has to get that student’s projected 𝑦𝑦-value (𝑦𝑦�𝑖𝑖). 
Specifically, the 𝐶𝐶𝑥𝑥𝑥𝑥 matrix used to obtain the regression coefficients for a particular student is that 
subset of the overall 𝐶𝐶 matrix that corresponds to the set of predictors for which this student has scores. 
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The prediction equation also requires estimated mean scores for the response and for each predictor 
(the 𝜇̂𝜇 terms in the prediction equation). These are not simply the grand mean scores. It can be shown 
that in an ANCOVA if one imposes the restriction that the estimated teacher effects should sum to zero 
(that is, the teacher effect for the “average teacher” is zero), then the appropriate means are the means 
of the teacher means. The teacher-level means are obtained from the EM algorithm mentioned above, 
which accounts for missing data. The overall means (𝜇̂𝜇 terms) are then obtained as the simple average of 
the teacher-level means. 

Once the parameter estimates for the prediction equation have been obtained, predictions can be made 
for any student with any set of predictor values, so long as that student has a minimum of three prior 
test scores.  

𝑦𝑦�𝑖𝑖 =  𝜇̂𝜇𝑦𝑦 +  𝛽̂𝛽1(𝑥𝑥𝑖𝑖1 −  𝜇̂𝜇1) + 𝛽̂𝛽2(𝑥𝑥𝑖𝑖2 − 𝜇̂𝜇2) +⋯ (18) 

The 𝑦𝑦�𝑖𝑖 term is nothing more than a composite of all the student’s past scores. It is a one-number 
summary of the student’s level of achievement prior to the current year. The different prior test scores 
making up this composite are given different weights (by the regression coefficients, the 𝛽̂𝛽s) in order to 
maximize its correlation with the response variable. Thus, a different composite would be used when 
the response variable is Math than when it is Reading, for example. Note that the 𝛼𝛼�𝑗𝑗  term is not 
included in the equation. Again, this is because 𝑦𝑦�𝑖𝑖  represents prior achievement before the effect of the 
current district, school, or teacher. To avoid bias due to measurement error in the predictors, 
composites are obtained only for students who have at least three prior test scores. 

The second step in the URM is to estimate the teacher effects (𝛼𝛼𝑗𝑗 ) using the following ANCOVA model. 

𝑦𝑦𝑖𝑖 =  𝛾𝛾0 + 𝛾𝛾1𝑦𝑦�𝑖𝑖 + 𝛼𝛼𝑗𝑗 + 𝜖𝜖𝑖𝑖 (19) 

In the URM model, the effects (𝛼𝛼𝑗𝑗 ) are considered random effects. Consequently, the 𝛼𝛼�𝑗𝑗s are obtained 
by shrinkage estimation (empirical Bayes). 4 The regression coefficients for the ANCOVA model are given 
by the 𝛾𝛾s. 

3.2.3 Students Included in the Analysis 
There are two sets of value-added analyses for districts and schools: Accountable and Tested. Each set 
has its own business rules as described below. In the Accountable set, the analyses that are used to 
produce scores used for school and district report cards are all based on the business rules governing 
the accountability system. For more information about the “Full Academic Year/Where Kids Count 
Rules,” see http://education.ohio.gov/getattachment/Topics/Data/Report-Card-
Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx. These measures are only 
produced for OST Science in grades 5 and 8, Algebra I, Geometry, Mathematics I and II, and ELA I and II 
at the district and school level for the report card system.  

                                                             
4 For more information about shrinkage estimation, see, for example, Ramon C. Littell, George A. Milliken, Walter W. Stroup, Russell D. 
Wolfinger, and Oliver Schabenberger, SAS for Mixed Models, Second Edition (Cary, NC: SAS Institute Inc., 2006). Another example is Charles E. 
McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models, Second Edition (Hoboken, NJ: John Wiley & Sons, 
2008). 

http://education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx
http://education.ohio.gov/getattachment/Topics/Data/Report-Card-Resources/Sections/Report-Card-Resources/WHERE-KIDS-COUNT.pdf.aspx
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For purposes of diagnostic interpretation, the EVAAS web application available to educators also 
provides reports that are not based on the accountability rules but only where students took their tests. 
This is the Tested set. In most cases, the “Accountable” district and school are the same as the “Tested” 
district and school. However, there are some cases where these are different. For example, there could 
be students with disabilities who are held accountable to a different school or only the district level and 
not the school where they might have tested. There are also students who are accountable to the 
district or the state for various purposes. These “Tested” reports are produced for OST Science tests in 
grades 5 and 8, OST Social Studies tests in grade 6 (2016-17 only), OST Algebra I, Geometry, 
Mathematics I and II, and ELA I and II at the district, school, and teacher levels. OST Biology, American 
History, and American Government reports are only produced at the teacher level and not the district 
and school levels.  

For a student’s score to be used in the district-, school-, or teacher-level analysis for a particular 
subject/year and grade in cases of grade-level tests, the student must have at least three valid predictor 
scores that can be used in the analysis, all of which cannot be deemed outliers. (See Section 8.3.8 on 
Outliers.) These scores can be from any year, subject, and grade that are used in the analysis. It will 
include subjects other than the subject being predicted. The required three predictor scores are needed 
to sufficiently dampen the error of measurement in the tests to provide a reliable measure. If a student 
does not meet the three-score minimum, then that student is excluded from the analyses. It is 
important to note that not all students have to have the same three prior test scores; they only have to 
have some subset of three that were used in the analysis.  

Unlike the MRM analysis, students with non-traditional grade patterns are included in the model as one 
student. Since this model does not determine growth based on consecutive grade movement on tests, 
students do not need to stay in one cohort from one year to the next. That said, if a student is retained 
and retakes the same test, then that prior score on the same test will not be used as a predictor in the 
URM for the same test as a response. This is mainly due to the fact that very few students used in the 
models have a prior score on the same test that could be used as a predictor.  

3.2.4  Minimum Number of Students for Reporting 

3.2.4.1 District- and School-Level 
To receive a report, a tested district or school must have at least 10 students in that year, subject, and 
grade that have the required three prior test scores needed to obtain a predicted score in that year, 
subject, and grade. 

3.2.4.2 Teacher-Level 
The teacher-level value-added model includes teachers who are linked to at least 10 students with a 
valid test score in the same subject and grade. To clarify, this means teachers are included in the 
analysis even if they do not receive a report due to the other requirements. In other words, this 
requirement does not consider the percentage of instructional time the teacher spends with each 
student in a specific subject and grade. 

However, to receive a Teacher Value-Added report for a particular year, subject, and grade, there are 
two additional requirements. First, a teacher must have at least six Full Year Equivalent (FYE) students in 
a specific subject, grade, and year. The teacher’s number of FYE students is based on the number of 
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students linked to that teacher and the percentage of instructional time the teacher has for each 
student. For example, if a teacher taught 10 students for 50% of their instructional time, then the 
teacher’s FYE number of students would be five. The teacher would not receive a Teacher Value-Added 
report. If another teacher taught 12 students for 50% of their instructional time, then that teacher 
would have six FYE students. The teacher would receive a Teacher Value-Added report. The instructional 
time attribution is obtained from the linkage roster verification process used in Ohio. This information is 
in the files sent to EVAAS described in Section 2.  

The process for creating an accurate link between students and teachers (roster verification) allows 
teachers and principals to review the attribution used in the EVAAS reports. For more information about 
teacher roster verification, see http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-
System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-
Measure/Value-Added-Roster-Verification. 

http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-Measure/Value-Added-Roster-Verification
http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-Measure/Value-Added-Roster-Verification
http://education.ohio.gov/Topics/Teaching/Educator-Evaluation-System/Ohio-s-Teacher-Evaluation-System/Student-Growth-Measures/Value-Added-Student-Growth-Measure/Value-Added-Roster-Verification
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4 Growth Expectation 
The simple definition of growth was described in the introduction as follows: 

• Growth = current achievement/current results compared to all prior achievement/prior results 
with achievement being measured by a quality assessment such as the OSTs. 

Typically, the “expected” growth is set at zero, such that positive gains or effects are evidence that 
students made more than the expected progress and negative gains or effects are evidence that 
students made less than the expected progress. 

However, the definition of “expected growth” varies by model, and the precise definition depends on 
the selected model and state preference. This section provides more details about the options and 
selections for defining expected growth. This document describes the expected growth as either a “base 
year” or “intra-year” approach. Base year refers to a growth expectation that is based on a particular 
year, say 2010, and any growth in the current year will be compared to the distribution of student scores 
in the base year. This is what was used in Ohio in previous years’ reporting for Math and Reading in 
grades 4–8. Intra-year refers to a growth expectation that is always based on the current year (2018 for 
2018 growth estimates, 2019 for 2019 growth estimates, and so on). The intra-year approach has been 
in use for all value-added reporting since 2015 although the base year was previously used for reporting 
for Math and Reading in grades 4–8.  

4.1  Intra-Year Approach 

4.1.1 Description 
• Currently provided with URM reporting in Science and end-of-course assessments in non-

consecutive years and with MRM reporting in Math and Reading.  
• URM definition: Students with a district, school, or teacher made the same amount of progress 

as students with the average district, school, or teacher in the state for that same year, subject, 
and grade. 

• MRM definition: Students maintained the same relative position with respect to the statewide 
student achievement that year. 

• MRM simplified example: If students’ achievement was at the 50th NCE in 2018 grade 4 Math, 
based on the 2018 grade 4 Math scale score distribution, and their achievement is at the 50th 
NCE in 2019 grade 5 Math, based on the 2019 grade 5 Math scale score distribution, then their 
estimated gain is 0.0 NCEs. 

• Key feature: The value-added measures tend to be centered on the growth expectation every 
year with approximately half of the district/school/teacher estimates above zero and 
approximately half of the district/school/teacher estimates below zero.  

4.1.2 Illustrated Example 
Figure 3 below provides a simplified example of how growth is calculated with an intra-year approach 
when the state or pool achievement increases. The figure has four graphs, each of which plot the NCE 
distribution of scale scores for a given year and grade. In this example, the figure shows how the gain is 
calculated for a group of grade 4 students in Year 1 as they become grade 5 students in Year 2. In Year 1, 
our grade 4 students score, on average, 420 scale score points on the test, which corresponds to the 50th 
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NCE (similar to the 50th percentile). In Year 2, the students score, on average, 434 scale score points on 
the test, which corresponds to a 50th NCE based on the grade 5 distribution of scores in Year 2. The grade 
5 distribution of scale scores in Year 2 was higher than the grade 5 distribution of scale scores in Year 1, 
which is why the lower right graph is shifted slightly to the right. The blue line shows what is required for 
students to make expected growth, which would be to maintain their position at the 50th NCE for grade 
4 in Year 1 as they become grade 5 students in Year 2. The growth measure for these students is Year 2 
NCE – Year 1 NCE, which would be 50 – 50 = 0. Similarly, if a group of students started at the 35th NCE, 
the expectation is that they would maintain that 35th NCE.  

Note the actual gain calculations are much more robust than what is presented here; as described in the 
previous section, the models can address students with missing data, team teaching, and all available 
testing history.  

Figure 3: Intra-Year Approach Example 

 

4.2 Base Year Approach 

4.2.1 Description 
In years prior to 2014-15, the MRM value-added models used a “base year approach.” This means that 
the growth expectation is based on a cohort of students moving from grade to grade and maintaining 
the same relative position with respect to the statewide student achievement in the base year for a 
specific subject and grade.  

As a simplified example, if students’ achievement was at the 50th NCE in 2010 grade 4 Math, based on 
the 2010 grade 4 Math scale score distribution, and at the 52nd NCE in 2011 grade 5, based on the 2010 
grade 5 Math scale score distribution, then their estimated mean gain is 2 NCEs. 

The key feature is that, in theory, all educational entities could exceed or fall short of the growth 
expectation (or standard) in a particular subject, grade, and year, and the distribution of entities that are 
considered above or below could change over time. 
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4.2.1.1 Stabilized NCE Scores 
Even though standard psychometric methods are used to provide for equivalent scales within a grade 
and subject, it is recognized that unanticipated variability in the Ohio Achievement Assessment (OAA) 
scaling emerged across grades within a single year of testing, and across years within a grade. Therefore, 
in Ohio reporting prior to 2014-2015, the scale score distributions were converted into stabilized NCE 
scores using the statewide student achievement data in the base year (set then at 2010). The mapping 
from scale scores to NCEs was further modified with the “scale stabilization procedure” to compute the 
NCEs for each subject, grade, and year. The growth standard was given by maintaining the relative 
position in the statewide distribution of student achievement in the base year (2010) from grade to 
grade after stabilization. The scale stabilization procedure is described in detail at: 
http://education.ohio.gov/getattachment/Topics/Data/Accountability-Resources/Value-Added-
Resources/OHIO-SCALE-STABILIZATION-FINAL-1.pdf.aspx.  

In general, when moving to a new assessment, as was the case in Ohio for the 2014-15 reporting, the 
intra-year approach can be used during the transition between old and new assessments. This will 
convert the scale scores of each of the different assessments to NCEs within each year. The growth 
standard expectation is then based on maintaining the same relative position with respect to all of a 
student’s peers. This approach is useful when the assessment changes scales from one year to the next. 
The intra-year approach will be used for at least one additional year after the assessment change to 
ensure there has been a smooth transition. More details about the growth expectation of the intra-year 
approach are in Section 4.1. 

4.2.2 Illustrated Example 
Figure 4 below provides a simplified example of how growth is calculated with a base year approach 
when the state achievement increases. The figure has four graphs, each of which plot the NCE 
distribution of scale scores for a given year and grade. In Ohio, the base year was most recently set at 
2010, and the figure shows how the gain is calculated for a group of grade 4 students in Year 1 as they 
became grade 5 students in Year 2. In Year 1, the grade 4 students scored, on average, 420 scale score 
points on the test, which corresponds to the 50th NCE (similar to the 50th percentile). In Year 2, the 
students scored, on average, 434 scale score points on the test, which corresponds to a 52nd NCE based 
on the grade 5 distribution of scores in Year 1. The grade 5 distribution of scale scores in Year 2 was 
higher than the grade 5 distribution of scale scores in Year 1, which is why the lower right graph is 
shifted slightly to the right. The blue line shows what was required for students to make expected 
growth, which would be to maintain their position at the 50th NCE for grade 4 in Year 1 as they became 
grade 5 students in Year 2. The growth measure for these students was Year 2 NCE – Year 1 NCE, which 
would be 52 – 50 = 2. Similarly, if a group of students started out at the 35th NCE in grade 4 in Year 1 and 
then moved their position to the 37th NCE in grade 5 in Year 2, they would have a gain of two NCEs as 
well. 

The actual gain calculations are much more robust than what is presented here; as described in the 
previous section, the models can address students with missing data, team teaching, and all available 
testing history. This simple illustration provides the basic concept. 

http://education.ohio.gov/getattachment/Topics/Data/Accountability-Resources/Value-Added-Resources/OHIO-SCALE-STABILIZATION-FINAL-1.pdf.aspx
http://education.ohio.gov/getattachment/Topics/Data/Accountability-Resources/Value-Added-Resources/OHIO-SCALE-STABILIZATION-FINAL-1.pdf.aspx
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Figure 4: Base Year Approach Example 

 

4.3 Defining the Expectation of Growth During an Assessment Change 
During the change of assessments, the scales from one year to the next will be completely different 
from one another. This does not present any particular changes with the URM methodology because all 
predictors in this approach are already on different scales from the response variable, so the transition 
is no different from a scaling perspective. Of course, there will be a need for the predictors to be 
adequately related to the response variable of the new assessment.  

With the intra-year approach in the MRM, the scales from one year to the next can be completely 
different from one another. This method converts any scale to a relative position and can be used 
through an assessment change. 
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5 Using Standard Errors to Create Levels of Certainty and 
Define Effectiveness 

In all its reports on value-added measures, EVAAS includes the value-added estimate and its associated 
standard error. This section provides more information about standard error and how it is used to 
define effectiveness. 

5.1 Using Standard Errors Derived from the Models 
As described in the modeling approaches section, each model provides an estimate of growth for a 
district, school, or teacher in a particular subject, grade, and year as well as that estimate’s standard 
error. The standard error is a measure of the quantity and quality of student-level data included in the 
estimate, such as the number of students and the occurrence of missing data for those students. 
Because measurement error is inherent in any growth or value-added model, the standard error is a 
critical part of the reporting. Taken together, the estimate and standard error provide educators and 
policymakers with critical information about the certainty that students in a district, school or classroom 
are making decidedly more or less than the expected progress. Taking the standard error into account is 
particularly important for reducing the risk of misclassification (for example, identifying a teacher as 
ineffective when he or she is truly effective) for high-stakes usage of value-added reporting. 

Furthermore, because the MRM and URM models use robust statistical approaches as well as maximize 
the use of students’ testing history, they can provide value-added estimates for relatively small numbers 
of students. This allows more teachers, schools, and districts to receive their own value-added 
estimates, which is particularly useful to rural communities or small schools. As described in Section 3, 
there are minimum requirements between six and 10 students per tested subject, grade, and year 
depending on the model, which are relatively small.  

The standard error also takes into account that even among teachers with the same number of 
students, teachers might have students with very different amounts of prior testing history. Due to this 
variation, the standard errors in a given subject, grade, and year could vary significantly among teachers, 
depending on the available data that is associated with their students, and it is another important 
protection for districts, schools and teachers to incorporate standard errors to the value-added 
reporting.  

5.2 Defining Effectiveness in Terms of Standard Errors 
Each value-added estimate has an associated standard error (SE), which is a measure of uncertainty that 
depends on the quantity and quality of student data associated with that value-added estimate. 

The standard error can help indicate whether a value-added estimate is significantly different from the 
growth standard. This growth standard is defined in different ways, but it is typically represented as zero 
on the growth scale and considered to be the expected growth. In the Ohio reporting, the value-added 
measures are placed in different categories based on the following: 

• Dark Green (Most Effective or “A”) is an indication that the growth measure is two standard 
errors or more above the growth standard (0). This level of certainty is significant evidence of 
exceeding the standard for academic growth. 
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• Light Green (Above Average or “B”) is an indication that the growth measure is at least one but 
less than two standard errors above the growth standard (0). This is moderate evidence of 
exceeding the standard for academic growth. 

• Yellow (Average or “C”) is an indication that the growth measure is less than one standard error 
above the growth standard (0) and no more than one standard error below it (0). This is 
evidence of meeting the standard for academic growth. 

• Orange (Approaching Average or “D”) is an indication that the growth measure is more than 
one but no more than two standard errors below the growth standard (0). This is moderate 
evidence of not meeting the standard for academic growth. 

• Red (Least Effective or “F”) is an indication that the growth measure is more than two standard 
errors below the growth standard (0). This level of certainty is significant evidence of not 
meeting the standard for academic growth. 

The terminology might be slightly different depending on what analysis is being categorized. For 
example, teacher-level reporting uses the same boundary definitions, but the language is different to 
indicate the teacher-level analysis. In the reporting, there is a need to display the values used to 
determine these categories. This value is typically referred to as the growth index and is simply the 
estimate or mean gain divided by its standard error. Since the expectation of growth is zero, this 
measures the certainty about the difference of a growth measure to zero.  

5.3 Rounding and Truncating Rules 
As described in the previous section, the effectiveness categories are based on the value of the growth 
index. As additional clarification, the calculation of the growth index uses unrounded values for the 
value-added measures and standard errors. After the growth index has been created but before the 
categories are determined, the index values are rounded or truncated by taking the maximum value of 
the rounded or truncated index value out to two decimal places. This provides the highest category 
given any type of rounding or truncating situation. For example, if the score was a 1.995, then rounding 
would provide a higher category. If the score was a -2.005, then truncating would provide a higher 
category. In practical terms, this only impacts a very small number of measures. 

Also, when value-added measures are combined to form composites, as described in the next section, 
the rounding or truncating occurs after the final index is calculated for that combined measure.  
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6 Composite Calculations 
A composite combines value-added measures from different subjects, grades, and/or years. The 
sections below describe the calculation of composites for teacher reports, then schools, and lastly 
principals. 

6.1 Teacher-Level Composites 
The composite for teachers uses the most appropriate and robust statistical approach possible in the 
calculation of the value-added estimate and associated standard error. Although the following text 
provides a specific example of a teacher’s composite, the key policy decisions can be summarized as 
follows: 

• Single-year, two-year and three-year composites are available for teachers. 
• Teacher composites include all prior value-added reporting, not just the subjects for which the 

teacher has a value-added measure in the current year. 
• The composite for teachers weights each subject, grade, and year based on the FYE number of 

students used in that measure. 

The key steps for determining a teacher’s composite index are as follows: 

1. Calculate MRM-based composite gain, standard error, and index across subjects and years. 
2. Calculate URM-based composite index across subjects and years. 
3. Calculate composite index using both the MRM- and URM-based composite indices. 

If a teacher does not have value-added measures from both the MRM and URM, then the composite 
index would be based on the model for which the teacher does have reporting. If a teacher does not 
have multiple years of value-added measures, then the composite index would be based on the single-
year composite index. The following sections illustrate this process using value-added measures from a 
sample teacher, which are provided below: 

Table 4: Sample Teacher Value-Added Information 

Year Subject Grade Value-Added 
Measure 

Standard Error Number of FYE 
Students 

2019 Reading 8 -0.30 1.20 65 

2019 Math 8 3.80 1.50 70 

2019 Algebra I 8 11.75 6.20 20 

6.1.1 Calculate MRM-Based Composite Gain Across Subjects 
All value-added measures from the MRM are in the same scale (NCEs), so the composite gain across 
subjects is a simple average gain of all applicable gains with each weighted according to the proportion 
of students linked to that gain. For our sample teacher, the total number of FYE students affiliated with 
MRM value-added measures is 65 + 70, or 135. The Reading grade 8 value-added measure would be 
weighted at 65/135 and the Math grade 8 value-added measure would be weighted at 70/135. 

More specifically, the sample teacher would have an MRM-based composite gain as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  
65

135𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅8 + 
70

135𝑀𝑀𝑀𝑀𝑀𝑀ℎ8 = �
65

135
�(−0. 30) + �

70
135

�(3.80) = 1.83 (20) 

6.1.2 Calculate MRM-Based Standard Error Across Subjects 

6.1.2.1 Technical Background on Standard Errors 
As a reminder, the use of the word “error” does not indicate a mistake. Rather, value-added models 
produce estimates. That is, the value-added gains in the above tables are estimates, based on student 
test score data, of the teacher’s true value-added effectiveness. In statistical terminology, a “standard 
error” is a measure of the uncertainty in the estimate providing a means to determine whether an 
estimate is decidedly above or below the growth expectation. Standard errors can, and should, also be 
provided for the composite gains that have been calculated, as shown above, from a teacher’s value-
added gain estimate. 

Statistical formulas are often more conveniently expressed as variances, and this is the square of the 
standard error. Standard errors of composites can be calculated using variations of the general formula 
shown below. To maintain the generality of the formula, the individual estimates in the formula (think of 
them as value-added-gains) are simply called 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍. If there were more than or fewer than three 
estimates, the formula would change accordingly. As OST composites use proportional weighting 
according to the number of students linked to each value-added gain, each estimate is multiplied by a 
different weight: 𝑎𝑎, 𝑏𝑏, or 𝑐𝑐. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎𝑎𝑎+ 𝑏𝑏𝑏𝑏+ 𝑐𝑐𝑐𝑐) = 𝑎𝑎2𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) + 𝑐𝑐2𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) 

+2𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) + 2𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑍𝑍) + 2𝑏𝑏𝑏𝑏 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑍𝑍) 
(21) 

Covariance, denoted by 𝐶𝐶𝐶𝐶𝐶𝐶, is a measure of the relationship between two variables. It is a function of a 
more familiar measure of relationship, the correlation coefficient. Specifically, the term 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) is 
calculated as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)�𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)�𝑉𝑉𝑎𝑎𝑎𝑎(𝑌𝑌) (22) 

The value of the correlation ranges from -1 to +1, and these values have the following meanings.  

• A value of zero indicates no relationship. 
• A positive value indicates a positive relationship, or 𝑌𝑌 tends to be larger when 𝑋𝑋 is larger.  
• A negative value indicates a negative relationship, or 𝑌𝑌 tends to be smaller when 𝑋𝑋 is larger. 

Two variables that are unrelated have a correlation, and covariance, of zero. Such variables are said to 
be statistically independent. If the 𝑋𝑋 and 𝑌𝑌 values have a positive relationship, then the covariance will 
also be positive. As a general rule, two value-added gain estimates are statistically independent if they 
are based on completely different sets of students. For our sample teacher’s composite gain, the 
relationship will generally be positive, and this means that the MRM-based composite standard error is 
larger than it would be assuming independence. 
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6.1.2.2 Illustration of MRM-Based Standard Error for the Sample Teacher 
For the sample teacher, it cannot be assumed that the gains in the composite are independent because 
it is likely that some of the same students are represented in different value-added gains, such as grade 
8 Math in 2019 and grade 8 Reading in 2019.  

However, to demonstrate the impact of the covariance terms on the standard error, it is useful to 
calculate the standard error using (inappropriately) the assumption of independence. Using the MRM-
based FYE weightings and standard errors reported in Table 4 and assuming total independence, the 
standard error would then be as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆 =   ��
65

135
�
2

(𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅8)2+ �
70

135
�
2

(𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀ℎ8)2

=   ��
65

135
�
2

(1.20)2+ �
70

135
�
2

(1.50)2 = 0.97 

(23) 

At the other extreme, if the correlation between each pair of value-added gains had its maximum value 
of +1, the standard error would be as follows using the MRM-based FYE weightings and standard errors 
from Table 4: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆

= ��
65

135
�
2

(𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅8)2 + �
70

135
�
2

(𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀ℎ8)2+ 2 �
65

135
��

70
135

�(𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅8)(𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑡𝑡ℎ8) 

= ��
65

135
�
2

(1.20)2 + �
70

135
�
2

(1.50)2+ 2 �
65

135
��

70
135

�(1.20)(1.50) = 1.36 

(24) 

The actual standard error will fall somewhere between the two extreme values of 0.97 and 1.36 with the 
specific value depending on the values of the correlations between pairs of value-added gains. The 
magnitude of each correlation depends on the extent to which the same students are in both estimates 
for any two subject, grade, and year estimates.  

For example, if the 2019 grade 8 Math and 2019 grade 8 Reading classes had no students in common, 
then their correlation would be zero. On the other hand, if the 2019 grade 8 Math and 2019 grade 8 
Reading classes contained many of the same students, there would be a positive correlation. However, 
even if those two classes had exactly the same students, the correlation would likely be considerably 
less than +1. Correlations of gains across years might be positive or slightly negative as the same 
student’s score can be used in multiple gains. The actual correlations and covariances themselves are 
obtained as part of the EVAAS modeling process using equation (10) from Section 3.1.3. It would be 
impossible to obtain them outside of the modeling process. This process uses all the information about 
which students are in which subject, grade, and year for each teacher.  

Although this approach uses a more sophisticated technique, it more accurately captures the potential 
relationships among teacher estimates and student scores. This will lead to the appropriate standard 
error that will typically be between these two extremes, which are 0.97 and 1.36 in this example. In 
general, standard error of the composite gain will vary depending on the standard errors of the value-
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added gains and the correlations between pairs of value-added gains. The standard errors of the 
individual value-added gains will depend on the quantity and quality of the data that went into the gain, 
such as the number of students and the amount of missing data all those students have will contribute 
to the magnitude of the standard error. 

6.1.3 Calculate MRM-Based Composite Index Across Subjects 
The final step is to calculate the MRM-based composite index, which is the composite value-added gain 
divided by its standard error. The composite index for the sample teacher is 1.83 divided by a number 
between 0.97 and 1.36. The actual MRM-based standard error is determined using all the information 
described above, which includes information beyond just our one sample teacher. For simplicity’s sake, 
let’s assume that the actual standard error in this example was 1.15, and the index for this teacher 
would be calculated as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎
𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆 =

1.83
1.15 = 1.59 (25) 

Although some of the values in the example were rounded for display purposes, the actual rounding or 
truncating only occurs after all the measures have been combined as described in Section 5.3.  

6.1.4 Calculate URM-based Index Across Subjects 
For our sample teacher (and for the majority of teachers who receive URM reporting in Ohio), there is 
only one available URM value-added measure. This means that the reported value-added index for that 
subject will be the same that is calculated for the URM-based composite index. For the sample teacher, 
only a 2019 Algebra I growth measure is available.  

𝑈𝑈𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥 =
𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼 𝑉𝑉𝑉𝑉 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼 𝑆𝑆𝑆𝑆 =
11.75
6.20 = 1.90 (26) 

However, should a teacher have more than one value-added measure based on the URM, then the 
composite index would be calculated by first calculating index values for each subject and then 
combining those weighting by the effective number of students. The standard error of this combined 
index must assume independence since the URM measures are done in separate models for each year 
and subject 

6.1.5 Calculate the Combined MRM and URM Composite Index Across Subjects 
The two composite indices from the MRM and URM are weighted according to the number of students 
linked to each model to determine the combined composite index.  

Our sample teacher has 155 students of which 135 are linked to the MRM and 20 to the URM. The 
combined composite index would be calculated as follows using these weightings, the MRM-based 
composite index across subjects, and the URM-based index across subjects: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �
135
155

�(1.59)+ �
20

155
� (1.90) = 1.62 (27) 

This combined index is not an actual index itself until it is adjusted to accommodate for the fact that it is 
based on multiple pieces of evidence together. An index, by definition, has a standard error of 1, but this 
unadjusted value (1.62) does not have a standard error of 1. The next step is to calculate the new 
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standard error and divide the combined composite index found above by it. This new, adjusted 
composite index will be the final index with a standard error of 1. The standard error can be found given 
the standard formula above and the fact that each index has a standard error of 1. Independence is 
assumed since these are done outside of the models. In this example, the standard error would be as 
follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆 =  ��
135
155

�
2

(1)2+ �
20

155
�
2

(1)2 = 0.88 (28) 

Therefore, the final combined composite index value is 1.62 divided by 0.88, or 1.85. This is the value 
that determines the teacher rating in the evaluation system.  

6.1.6 Multi-Year Composites 
The calculation for multi-year composites is the same as what was shown for the single-year composite. 
Any MRM growth measures could be combined across grades, subjects, and years within the model, and 
the model would provide the combined standard error as well. Any URM growth measures would be 
combined after they have been converted to growth indices as shown above using the index of the 
appropriate multi-year average as opposed to the single-year value-added measure for a URM subject. 
Growth data from both models would be combined exactly as shown in the previous section. 

6.2 District and School-Level Composites  
Like the previous section, this section presents how school-level composites are calculated, and the 
decisions for schools share the same statistical approaches and policy decisions as those for teachers. 
The key policy decisions by ODE for schools can be summarized as follows: 

• A composite is calculated for multiple subjects, grades, and years. 
• A composite is calculated for a single year, up-to-two years, and up-to-three years of growth 

measures, and the web reporting will include the single year, up-to-two years, and up-to-three 
years composites. 

• The composite for districts and schools can include OST Math, Reading, Science, Social Studies, 
Algebra I, Mathematics I, Geometry, Mathematics II, ELA I, and ELA II. 

• The composite for schools weights each subject and grade by the number of students in that 
subject and grade. 

The key steps for determining a school’s composite index are as follows: 

1. Calculate MRM-based composite gain, standard error, and index across subjects and grades. 
2. Calculate URM-based composite index across subjects. 
3. Calculate composite index using both the MRM- and URM-based composite indices. 

The following sections illustrate this process for a single-year composite using value-added measures 
from a sample middle school, which are provided below: 
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Table 5: Sample School Value-Added Information 

Year Subject Grade Value-Added Gain Standard Error Number of Students 

2019 Math 6 3.30 0.70 44 

2019 Reading 6 -1.10 1.00 46 

2019 Math 7 2.00 0.50 50 

2019 Reading 7 2.40 1.10 50 

2019 Math 8 -0.30 0.60 40 

2019 Reading 8 3.80 0.70 50 

2019 Algebra I N/A -11.50 6.20 35 

6.2.1 Calculate MRM-Based Composite Gain Across Subjects 

As in the MRM-based composite gain for teachers, when the value-added estimates are in the same 
scale (NCEs), the school composite gain across the six subjects and grades is a weighted average based 
on the number of students in each subject and grade. For the school, the total number of students 
affiliated with MRM value-added measures is 44 + 46 + 50 + 50 + 40 + 50, or 280. The Math grade 6 
value-added measure would be weighted at 44/280, the Reading grade 6 value-added measure would 
be weighted at 46/280, and so on. More specifically, the composite gain is calculated using the following 
formula: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  44
280

𝑀𝑀𝑀𝑀𝑀𝑀ℎ6+ 46
280

𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑6 + 50
280

𝑀𝑀𝑀𝑀𝑀𝑀ℎ7 + 50
280

𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑7+ 40
280

𝑀𝑀𝑀𝑀𝑀𝑀ℎ8 + 50
280

𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑8  

                   = � 44
280

�(3.30)+ � 46
280

�(−1.10)+ � 50
280

�(2.00) + � 50
280

�(2.40)+ � 40
280

�(−0.30)+

� 50
280

�(3.80) = 1.76 

(29) 

6.2.2 Calculate MRM-Based Standard Error Across Subjects 

6.2.2.1 Technical Background on Standard Errors 
Similar to the teacher example, the standard error of the OST school composite value-added gain cannot 
be calculated using the assumption that the gains making up the composite are independent. This is 
because many of the same students are likely represented in different value-added gains, such as grade 
8 Math in 2019 and grade 8 Reading in 2019. The statistical approach, outlined in Section 3.1.3 (with 
references), is quite sophisticated and will account for the correlations between pairs of value-added 
gains as shown in equation (21) and using equation (6) for schools and equation (10) for teachers. 5 The 
composites are indeed linear combinations of the fixed effects of the models and can be estimated as 

                                                             
5 For more details about the statistical approach to derive the standard errors, see, for example: Ramon C. Littell, George A. Milliken, Walter W. 
Stroup, Russell D. Wolfinger, and Oliver Schabenberger, SAS for Mixed Models, Second Edition (Cary, NC: SAS Institute Inc., 2006). Another 
example: Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models, Second Edition (Hoboken, NJ: 
John Wiley & Sons, 2008). 
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described in Section 3.1.3. The magnitude of each correlation depends on the extent to which the same 
students are in both estimates for any two subject, grade, and year estimates.  

6.2.2.2 Illustration of MRM-Based Standard Error for a Sample School 
As discussed in the teacher example in 6.1.2.2, it cannot be assumed that the gains in the composite are 
independent because it is likely that some of the same students are represented in different value-
added gains. Again, to demonstrate the impact of covariance terms on the standard error, it is useful to 
calculate the standard error using (inappropriately) the assumption of independence. Using the student 
weightings and standard errors reported in Table 5 and assuming total independence, the standard 
error would then be as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆 =   �
�

44
280

�
2

(𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀ℎ6)2 + �
46

280
�
2

(𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅6)2+ �
50

280
�
2

(𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀ℎ7)2

+ �
50

280
�
2

(𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅7)2 + �
40

280
�
2

(𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀ℎ8)2+ �
50

280
�
2

(𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅8)2

=   �
�

44
280

�
2

(0.70)2 + �
46

280
�
2

(1.00)2 + �
50

280
�
2

(0.50)2

+ �
50

280
�
2

(1.10)2 + �
40

280
�
2

(0.60)2+ �
50

280
�
2

(0.70)2   
= 0.33 

(30) 

At the other extreme, if the correlation between each pair of value-added gains had its maximum value 
of +1, the standard error would be larger, as was shown in 6.1.2.2.  

The actual standard error will likely be above the value of 0.33 due to students being in both Math and 
Reading in the school with the specific value depending on the values of the correlations between pairs 
of value-added gains. The magnitude of each correlation depends on the extent to which the same 
students are in both estimates for any two subject, grade, and year estimates. 

For the sake of simplicity, let us assume that the actual standard error was 0.40 for the school composite 
in this example. 

6.2.3 Calculate MRM-Based Composite Index Across Subjects 
The next step is to calculate the MRM-based school composite index, which is the school composite 
value-added gain divided by its standard error. The MRM-based composite index for this school would 
be calculated as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆 =

1.76
0.40 = 4.40 (31) 

Although some of the values in the example were rounded for display purposes, the actual rounding or 
truncating only occurs after all the measures have been combined as described in Section 5.3.  

6.2.4 Calculate URM-Based Index Across Subjects 
For our sample school (and for the majority of middle schools in Ohio), there is only one available URM 
value-added measure. This means that the reported value-added index for that subject will be the same 
that is calculated for the URM-based composite index.  
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𝑈𝑈𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼 𝑉𝑉𝑉𝑉 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼 𝑆𝑆𝑆𝑆 =
−11.50

6.20 = −1.85 (32) 

However, should a school or district have more than one value-added measure based on the URM, then 
the composite index would be calculated by first calculating index values for each subject and then 
combining those weighting by the number of students. The standard error of this combined index must 
assume independence since the URM measures are done in separate models for each year and subject. 

6.2.5 Calculate the Combined MRM and URM Composite Index Across Subjects 
The two composite indices from the MRM and URM are then weighted according to the number of 
students within each model to determine the combined composite index. Our sample school has 315 
students, of which 280 are in the MRM and 35 in the URM, so the combined composite index would be 
calculated as follows using these weightings, the MRM-based composite index across subjects, and the 
URM-based index across subjects: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �
280
315

�4.40 + �
35

315
�(−1.85) = 3.71 (33) 

This combined index is not an actual index itself until it is adjusted to accommodate for the fact that it is 
based on multiple pieces of evidence together. An index, by definition, has a standard error of 1, but this 
unadjusted value (3.71) does not have a standard error of 1. The next step is to calculate the new 
standard error and divide the combined composite index found above by it. This new, adjusted 
composite index will be the final index with a standard error of 1. The standard error can be found given 
the standard formula above and the fact that each index has a standard error of 1. Independence is 
assumed since these are done outside of the models. In this example, the standard error would be as 
follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆 =  ��
280
315

�
2

(1)2+ �
35

315
�
2

(1)2 = 0.90 (34) 

Therefore, the final combined composite index value is 3.71 divided by 0.90, or 4.14. This is the value 
that determines the school accountability overall grade. Different accountability measures use subsets 
of students, but the overall composite calculation is done the same.  

6.2.6 Multi-Year Composites 
The calculation for multi-year composites is the same as what was shown for the single-year composite. 
Any MRM growth measures could be combined across grades, subjects, and years within the model, and 
the model would provide the combined standard error as well. Any URM growth measures would be 
combined after they have been converted to growth indices as shown above using the index of the 
appropriate multi-year average as opposed to the single-year value-added measure for a URM subject. 
Growth data from both models would be combined exactly as shown in the previous section.  

6.3 Principal-Level Composites 
This section captures how the policy decisions by ODE are implemented in the calculation of principal 
composites using school-level value-added data.  
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The key policy decisions and business rules for the principal-level composites can be summarized as follows: 

• The term “principal” here refers to both assistant principals and principals. They are equivalent 
for the purposes of the calculations, and composites should be calculated for each person rather 
than per person per position. 

• There are principals who fill the role of principal (P) for more than one school at a time. 
• Many schools have more than one assistant principal (AP) at a time. 
• Assume that each school has a single principal at any given time until, after applying the 

business rules below, the data still show more than one principal at a school in a particular 
school year.  

• Schools named “district testing” will be excluded. 
• A principal (P) or assistant principal (AP) must be in the school for 120 school days (190 calendar 

days) of a single school year to be linked to a school for that year. 
• The cutoff of a school year that is used for examining the data is from 9/15 to 5/31.  
• If a principal or assistant principal starts in a school after 5/31 and ends the position before 

9/15, do not link the staff member to that school for that year. 

6.3.1 Multiple Principals Reported at a School Per Year  
The following steps describe the process to identify when there could be multiple principals reported in 
a school in a given year: 

1. Derive school years per principal per school from start and end dates of each principal based on 
information provided by ODE. 

2. In cases where more than one principal is reported at a school with overlapping dates:  
a. Check the overlapping school years against the school year file provided by ODE to 

determine which school years personnel were reported as being employed as principals at 
the school. In that file, the SCHOOL_YEAR field shows the year in which a district reported 
the principal at that school.  

b. If a record of one of the overlapping principals per school does not show up in the school 
year file, exclude that record from the data used to compile the reports.  

3. In cases where this approach does not narrow the data to a single principal per year (that is, the 
start/end dates overlap and there is more than one person reported as principal in the same 
school per year), assume that the school had more than one principal during that school year. 
Apply the value-added to both persons.  

4. In cases where the school year file shows no principal reported for a school year, drop all 
overlapping records. 

The same rules apply for assistant principals, and there are many more overlapping records.  

6.3.2 Composite Calculation 
The following steps describe the policy decisions required to calculate the composite: 

• Calculate a composite for each person. Treat assistant principal and principal positions as 
equivalent.  

• A principal must be assigned to a school with a value-added measure in the most recent year to 
receive a composite. If the principal is not assigned to a school in the most recent year or the 
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school to which he or she is assigned does not have a value-added composite, the principal will 
not receive a composite for that year. 

• In 2018-19 reporting, the principal’s (and assistant principal’s) composites include growth 
measures based on a single year (the most recent year of reporting), up-to-two years, and up-
to-three years after applying above business rules. 

• If a principal remains in the same school within a year, calculate the principal’s single-year 
estimate as the school composite across subjects and grades for that year.  

• If a principal was in different schools within a year, calculate the principal’s single-year estimate 
(across schools) as the weighted average, adjusted for standard error, of the school composites 
for that year assuming independence. The weights are based on the number of subjects/grades 
in each school for that year.  

• If the principal is in the same single school across two years, then the principal up-to-two year 
composite is the same up-to-two year composite for the school.  

• If the principal is in the same single school across three years, then the principal up-to-three 
year composite is the same up-to-three year composite for the school.  

• If a principal is in more than one school across any of the three most recent years, then 
individual year composites are calculated as described above for the two different scenarios of 
being in the same or different schools within a year. The individual year composites are then 
weighted equally and averaged. The standard error is adjusted assuming independence when 
generating up-to-two year and up-to-three year composites.  
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7 Projection Model 
In addition to providing value-added modeling, EVAAS provides a variety of additional services including 
projected scores for individual students on tests the students have not yet taken. These tests include the 
statewide OSTs as well as district-administered ACT and SAT college entrance exams. These projections 
can be used to predict a student’s future success and might inform counseling and intervention to 
increase students’ likelihood of future success. 

OST projections are provided to a student’s next two tested grade-level OST-based on that student’s 
most recent tested grade, such as projections to grades 6 and 7 for students who most recently tested in 
grade 5. EOC projections are provided for students as soon as they have at least three test scores in 
common with the students in the most recent tested cohort. ACT or SAT projections are provided to 
students who last tested in grades 6–11.  

OST projections are made to the performance levels of Basic, Proficient, Accelerated, and Advanced, and 
the individual cut scores depend on each subject and grade. ACT/SAT projections will be provided to the 
following cut scores based on the performance of the 2018 (rather than 2019) cohort: 

• SAT Evidence-Based Reading and Writing to OH Remediation-Free Benchmark of 480 
• SAT Mathematics to OH Remediation-Free Benchmark of 530 
• ACT English to OH Remediation-Free Benchmark 18 
• ACT Mathematics to OH Remediation-Free Benchmark of 22 
• ACT Reading to OH Remediation-Free of Benchmark 22 

The statistical model that is used as the basis for the projections is, in traditional terminology, an 
analysis of covariance (ANCOVA) model. This model is the same statistical model used in the URM 
methodology applied at the school level described in Section 3.2.2. In this model, the score to be 
projected serves as the response variable (𝑦𝑦), the covariates (𝑥𝑥s) are scores on tests the student has 
already taken, and the categorical variable is the school at which the student received instruction in the 
subject, grade, and year of the response variable (𝑦𝑦). Algebraically, the model can be represented as 
follows for the 𝑖𝑖𝑡𝑡ℎ  student.  

𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦 + 𝛼𝛼𝑗𝑗 + 𝛽𝛽1(𝑥𝑥𝑖𝑖1 − 𝜇𝜇1) + 𝛽𝛽2(𝑥𝑥𝑖𝑖2− 𝜇𝜇2) +⋯+ 𝜖𝜖𝑖𝑖 (35) 

The 𝜇𝜇 terms are means for the response and the predictor variables. 𝛼𝛼𝑗𝑗  is the school effect for the 𝑗𝑗𝑡𝑡ℎ 
school, the school attended by the 𝑖𝑖𝑡𝑡ℎ  student. The 𝛽𝛽 terms are regression coefficients. Projections to 
the future are made by using this equation with estimates for the unknown parameters (𝜇𝜇 s, 𝛽𝛽s, 
sometimes 𝛼𝛼𝑗𝑗 ). The parameter estimates (denoted with “hats,” e.g., 𝜇̂𝜇, 𝛽̂𝛽) are obtained using the most 
current data for which response values are available. The resulting projection equation for the 𝑖𝑖𝑡𝑡ℎ  

student is  

𝑦𝑦�𝑖𝑖 =  𝜇̂𝜇𝑦𝑦 ±  𝛼𝛼�𝑗𝑗 + 𝛽̂𝛽1(𝑥𝑥𝑖𝑖1 − 𝜇̂𝜇1) + 𝛽̂𝛽2(𝑥𝑥𝑖𝑖2 − 𝜇̂𝜇2) +⋯+ 𝜖𝜖𝑖𝑖  (36) 

The reason for the “±” before the 𝛼𝛼�𝑗𝑗term is that since the projection is to a future time, the school that 
the student will attend is unknown, so this term is usually omitted from the projections. This is 
equivalent to setting 𝛼𝛼�𝑗𝑗  to zero, that is, to assuming that the student encounters the “average schooling 
experience” in the future. In some instances, a state or district might prefer to provide a list of feeder 
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patterns from which it is possible to determine the most likely school that a student will attend at some 
projected future date. In this case, the 𝛼𝛼�𝑗𝑗 term can be included in the projection.  

Two difficulties must be addressed to implement the projections. First, not all students will have the 
same set of predictor variables due to missing test scores. Second, because of the school effect in the 
model, the regression coefficients must be “pooled-within-school” regression coefficients. The strategy 
for dealing with these difficulties is the same as described in Section 3.2.2 using equations (16) and (17) 
and will not be repeated here.  

Once the parameter estimates for the projection equation have been obtained, projections can be made 
for any student with any set of predictor values. However, to protect against bias due to measurement 
error in the predictors, projections are made only for students who have at least three available 
predictor scores. In addition to the projected score itself, the standard error of the projection is 
calculated (𝑆𝑆𝑆𝑆(𝑦𝑦�𝑖𝑖)). Given a projected score and its standard error, it is possible to calculate the 
probability that a student will reach some specified benchmark of interest (𝑏𝑏). Examples are the 
probability of scoring at the proficient (or Advanced) level on a future end-of-grade test or the 
probability of scoring sufficiently well on a college entrance exam to gain admittance into a desired 
program. The probability is calculated as the area above the benchmark cutoff score using a normal 
distribution with its mean equal to the projected score and its standard deviation equal to the standard 
error of the projected score as described below. 𝛷𝛷 represents the standard normal cumulative 
distribution function.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑦𝑦�𝑖𝑖 ≥ 𝑏𝑏) =   𝛷𝛷 �
𝑦𝑦�𝑖𝑖 − 𝑏𝑏
𝑆𝑆𝑆𝑆(𝑦𝑦�𝑖𝑖)

� (37) 
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8 Data Quality and Pre-Analytic Data Processing 
This section provides an overview of the steps taken to ensure sufficient data quality and processing for 
reliable value-added analysis. 

8.1 Data Quality 
Data are provided each year to EVAAS consisting of student test data and file formats. These data are 
checked each year to be incorporated into a longitudinal database that links students over time. Student 
test data and demographic data are checked for consistency year to year to ensure that the appropriate 
data are assigned to each student. Student records are matched over time using all data provided by the 
state. Teacher records are matched over time using the teacher credential ID only as requested by ODE 
because other information, such as teacher name, might change over time, but credential ID remains 
the same.  

8.2 Checks of Scaled Score Distributions 
The statewide distribution of scale scores is examined each year to determine whether they are 
appropriate to use in a longitudinally linked analysis. Scales must meet the three requirements listed in 
Section 2.1 and described again below to be used in all types of analysis done within EVAAS. Stretch and 
reliability are checked every year using the statewide distribution of scale scores that is sent each year 
before the full test data is given.  

8.2.1 Stretch 
Stretch indicates whether the scaling of the test permits student growth to be measured for either very 
low- or very high-achieving students. A test “ceiling” or “floor” inhibits the ability to assess students’ 
growth for students who would have otherwise scored higher or lower than the test allowed. It is also 
important there are enough test scores at the high or low end of achievement, so measurable 
differences can be observed. Stretch can be determined by the percentage of students who score near 
the minimum or the maximum level for each assessment. In 2019, the percentage of students who 
achieved a maximum score on the OST end-of-grade and end-of-course assessments ranged from a high 
of 1.94% (sixth-grade Math) to a low of .02% (sixth-grade Reading). For example, if a much larger 
percentage of students scored at the maximum in one grade than in the prior grade, then it might seem 
that these students had negative growth at the very top of the scale when it is likely due to the artificial 
ceiling of the assessment. Percentages for all OST assessments are well below acceptable values, 
meaning that the OSTs have adequate stretch to measure value-added even in situations where the 
group of students are very high or low-achieving.  

8.2.2 Relevance 
Relevance indicates whether the test is aligned with the curriculum. The requirement that tested 
material correlates with standards will be met if the assessments are designed to assess what students 
are expected to know and be able to do at each grade level. Since the OSTs are designed to measure 
state curriculum, this is not an issue.  
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8.2.3 Reliability 

Reliability can be viewed in a few different ways for assessments. Psychometrics view reliability as the 
idea that a student would receive similar scores if the assessment was taken multiple times. Reliability 
also refers to the assessment’s scales across years; both types of reliability are important when 
measuring growth. The first type reliability is important for most any use of standardized assessments. 
The second type of reliability was important when a base year was used to set the expectation of growth 
since this approach assumes that scale scores mean the same thing in a given subject and grade across 
years.  

8.3 Data Quality Business Rules 
The pre-analytic processing regarding student test scores is detailed below.  

8.3.1 Missing Grade Levels 
In Ohio, the grade level used in the analyses and reporting is the tested grade, not the enrolled grade. If 
a grade level is missing on any end-of-grade type tests, then these records will be excluded from all 
analyses. The grade is required to include a student’s score in the appropriate part of the models, and it 
would need to be known if the score was to be converted into an NCE.  

For reference, of the 1,850,742 records from the 2018-19 OST Math, Reading, and Science assessments, 
no records were excluded due to this business rule. 

8.3.2 Duplicate (Same) Scores 
If a student has a duplicate score for a particular subject and tested grade in a given testing period and 
the duplicate score is exactly the same in both records, then the following business rules will be applied 
in order. 

• If there are multiple records for a student and one record has accountable district but the other 
records do not have an accountable district, then SAS will use the record that contains the 
accountable district.  

• If the student has multiple records that are identical except one has an accountable school and 
the other does not, then SAS will keep the record that contains the accountable school.  

• If the student is now accountable to multiple districts/schools, both records will be excluded. 

If there are still multiple records for a student at this point, then the above conditions are not met, but 
SAS can now apply similar rules at the tested level: 

• If the student has multiple records and one record contains a tested district but the tested 
district is missing in the other record, then SAS will keep the record that contains the tested 
district.  

• If the student has identical records except that there is tested school information in one record 
and no tested school information in the other record, then SAS will keep the record that 
contains the tested school information. If there are still multiple records for the student, this 
means that those records have the same accountable and tested information. If one record is 
linked to a teacher and the other is not, then SAS will keep the record that is linked to a teacher.  

• If there are still multiple records, then SAS will keep the record that has the most demographic 
fields filled out.  
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• If there are still multiple records, then SAS will only keep one record. 

8.3.3 Students with Missing Districts or Schools for Some Scores but not Others 
If a student has a score with a missing accountable district or school for a particular subject and grade in 
a given testing period, then the duplicate score that has an accountable district and/or school will be 
included over the score that has the missing data.  

Of the 2,749,626 records from the 2018-19 OST Math, Reading, Science, Algebra I, Geometry, ELA I, ELA 
II, Mathematics I, Mathematics II, Biology, American History and American Government assessments, 
2,715 records (0.10%) were excluded due to this business rule. 

8.3.4 Students with Multiple (Different) Scores in the Same Testing Administration 
If a student has multiple scores in the same period for a particular subject and grade and the test scores 
are not the same, then those scores will be excluded from the analysis. If duplicate scores for a 
particular subject and tested grade in a given testing period are at different accountable schools, then 
both scores will be excluded from the analysis. 

Of the 2,749,626 records from the 2018-19 OST Math, Reading, Science, Algebra I, Geometry, ELA I, ELA 
II, Mathematics I, Mathematics II, Biology, American History, and American Government assessments, 
2,639 records (0.10%) were excluded due to this business rule. 

8.3.5 Students with Multiple Grade Levels in the Same Subject in the Same Year 
A student should not have different tested grade levels in the same subject in the same year. If that is 
the case, then the student’s records are checked to see if the data for two separate students were 
inadvertently combined. If this is the case, then the student data are adjusted so that each unique 
student is associated with only the appropriate scores. If the scores appear to all be associated with a 
single unique student, then scores that appear inconsistent are excluded from the analysis.  

Of the 2,749,626 records from the 2018-19 OST Math, Reading, Science, Algebra I, Geometry, ELA I, ELA 
II, Mathematics I, Mathematics II, Biology, American History, and American Government assessments, 
six records (0.0002%) were excluded due to this business rule. 

8.3.6 Students with Records That Have Unexpected Grade Level Changes 
If a student skips more than one grade level (e.g., moves from sixth in 2018 to ninth in 2019) or is moved 
back by one grade or more (i.e. moves from fourth in 2018 to third in 2019) in the same subject, then 
the student’s records are examined to determine whether two separate students were inadvertently 
combined. If this is the case, then the student data is adjusted so that each unique student is associated 
with only the appropriate scores. In Ohio for the ODE analysis, EVAAS does not remove students with 
scores that appear to be associated with inconsistent grades. EVAAS leaves students in the analysis at 
the tested grade that EVAAS receives from ODE.  

8.3.7 Students with Records at Multiple Schools in the Same Test Period 
If a student is tested at two different accountable schools in a given testing period, then the student’s 
records are examined to determine whether two separate students were inadvertently combined. If this 
is the case, then the student data is adjusted so that each unique student is associated with only the 
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appropriate scores. In Ohio, it can happen that a student is accelerated in a subject and does test at two 
different accountable schools.  

8.3.8 Outliers 
Student assessment scores are checked each year to determine whether they are outliers in context 
with all the other scores in a reference group of scores from the individual student. These reference 
scores are weighted differently depending on proximity in time to the score in question. Scores are 
checked for outliers using related subjects as the reference group. For example, when searching for 
outliers for Math test scores, all OST Math grades are examined simultaneously, and any scores that 
appear inconsistent, given the other scores for the student, are flagged. Scores are flagged in a 
conservative way to avoid excluding any student scores that should not be excluded. Scores can be 
flagged as either high or low outliers. Once an outlier is discovered, that outlier will not be used in the 
analysis, but it will be displayed on the student testing history on EVAAS web application.  

This process is part of a data quality procedure to ensure that no scores are used if they were in fact 
errors in the data, and the approach for flagging a student score as an outlier is fairly conservative.  

Considerations included in outlier detection are: 

• Is the score in the tails of the distribution of scores? Is the score very high or low-achieving? 
• Is the score “significantly different” from the other scores as indicated by a statistical analysis 

that compares each score to the other scores?  
• Is the score also “practically different” from the other scores? Statistical significance can 

sometimes be associated with numerical differences that are too small to be meaningful.  
• Are there enough scores to make a meaningful decision? 

To decide whether student scores are considered outliers, all student scores are first converted into a 
standardized normal z-score. Then each individual score is compared to the weighted combination of all 
the reference scores described above. The difference of these two scores will provide a t-value of each 
comparison. Using this t-value, EVAAS can flag individual scores as outliers.  

There are different business rules for the low outliers and the high outliers, and this approach is more 
conservative when removing a very high-achieving score.  

For low-end outliers, the rules are: 

• The percentile of the score must be below 50.  
• The t-value must be below -3.5 when looking at the difference between the score in question 

and the reference group of scores.  
• The percentile of the comparison score must be above a certain value. This value depends on 

the position of the individual score in question but will range from 10 to 90 with the ranges of 
the individual percentile score. 

For high-end outliers, the rules are: 

• The percentile of the score must be above 50.  
• The t-value must be above 4.0. 
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• The percentile of the comparison score must be below a certain value. 
• There must be at least three scores in the comparison score average.  

Of the 2,749,626 records from the 2018-19 OST Math, Reading, Science, Algebra I, Geometry, ELA I, ELA 
II, Mathematics I, Mathematics II, Biology, American History, and American Government assessments, 
775 records (0.03%) were excluded due to this business rule. 

8.4 Teacher-Student Linkages 
Student linkages are not used in the analysis if they are listed as having more than 45 unexcused 
absences. These linkages are excluded first. Of the 3,062,196 linkages from the 2018-19 OST Math, 
Reading, Science, Algebra I, Geometry, ELA I, ELA II, Mathematics I, Mathematics II, Biology, American 
History, and American Government assessments, 58,986 linkages (1.93%) were excluded due to this 
business rule. 

Teacher-student linkages are connected to assessment data based on the subject and identification 
information described above. There are some instances where extra processing is required for analysis. 
The value-added models place a restriction on how teachers can claim students, such that a student 
cannot be claimed by teachers more than 100%. Therefore, if a student is claimed in an individual year, 
subject, and grade at more than 100%, then the individual teacher’s weight is divided by the total sum 
of all weights to redistribute the attribution of the student's test scores across teachers. A student can 
be claimed less than 100% for various reasons, so under-claimed linkages for a student are not modified. 


	1 Introduction to Value-Added Reporting in Ohio
	2 Input Data Used in the Ohio Value-Added Model
	1
	1
	2
	2
	2.1 Determining Suitability of Assessments
	2.1 Determining Suitability of Assessments
	2.1.1 Current Assessments

	2.2 Assessment Data Used in Ohio
	2.2.1 Tests Given in Consecutive Grades for the Same Subject
	2.2.2 Tests Given in Non-Consecutive Grades for the Same Subject
	2.2.3 Student Identification Information
	2.2.4 Assessment Information Provided

	2.3 Student-Level Information
	2.4 Teacher-Level Information
	2.5 Principal-Level Information
	2.6 Data Files by Source

	3 Value-Added Analyses
	3
	3.1 Multivariate Response Model Reporting for Tests in Consecutive Grades
	3
	3
	3.1 Multivariate Response Model Reporting for Tests in Consecutive Grades
	3.1 Multivariate Response Model Reporting for Tests in Consecutive Grades
	3.1.1 MRM at the Conceptual Level
	3.1.2 Normal Curve Equivalents
	3.1.2.1 Why EVAAS Uses Normal Curve Equivalents in MRM
	3.1.2.2  How EVAAS Uses Normal Curve Equivalents in MRM

	3.1.3 Technical Description of the Linear Mixed Model and the MRM
	3.1.3.1 District and School Level
	3.1.3.2 Teacher-Level

	3.1.4 Where the MRM is Used in Ohio
	3.1.5 Students Included in the Analysis
	3.1.5.1 Overall Accountable Districts and Schools
	3.1.5.2 Gifted Students for Districts and Schools
	3.1.5.3 Students with Disabilities for Districts and Schools
	3.1.5.4 Lowest 20% Achievement for Districts and Schools
	3.1.5.5 ESSA Accountability Student Groups for Districts and Schools
	3.1.5.6 Community School Closure
	3.1.5.7 Teacher-Level

	3.1.6 Minimum Number of Students for Reporting
	3.1.6.1 Districts and Schools
	3.1.6.2 Teacher-Level

	3.1.7 Dropout Recovery
	3.1.7.1 Data Inputs
	3.1.7.2 Modeling Approach


	3.2 Univariate Response Model (URM) for Tests in Non-Consecutive Grades
	3.2.1 URM at the Conceptual Level
	3.2.2 Technical Description of the District, School, and Teacher Models
	3.2.3 Students Included in the Analysis
	3.2.4  Minimum Number of Students for Reporting
	3.2.4.1 District- and School-Level
	3.2.4.2 Teacher-Level



	4 Growth Expectation
	4
	4
	4.1  Intra-Year Approach
	4.1  Intra-Year Approach
	4.1.1 Description
	4.1.2 Illustrated Example

	4.2 Base Year Approach
	4.2.1 Description
	4.2.1.1 Stabilized NCE Scores

	4.2.2 Illustrated Example

	4.3 Defining the Expectation of Growth During an Assessment Change

	5 Using Standard Errors to Create Levels of Certainty and Define Effectiveness
	5
	5
	5.1 Using Standard Errors Derived from the Models
	5.1 Using Standard Errors Derived from the Models
	5.2 Defining Effectiveness in Terms of Standard Errors
	5.3 Rounding and Truncating Rules

	6 Composite Calculations
	6
	6
	6.1 Teacher-Level Composites
	6.1 Teacher-Level Composites
	6.1.1 Calculate MRM-Based Composite Gain Across Subjects
	6.1.2 Calculate MRM-Based Standard Error Across Subjects
	6.1.2.1 Technical Background on Standard Errors
	6.1.2.2 Illustration of MRM-Based Standard Error for the Sample Teacher

	6.1.3 Calculate MRM-Based Composite Index Across Subjects
	6.1.4 Calculate URM-based Index Across Subjects
	6.1.5 Calculate the Combined MRM and URM Composite Index Across Subjects
	6.1.6 Multi-Year Composites

	6.2 District and School-Level Composites
	6.2.1 Calculate MRM-Based Composite Gain Across Subjects
	6.2.2 Calculate MRM-Based Standard Error Across Subjects
	6.2.2.1 Technical Background on Standard Errors
	6.2.2.2 Illustration of MRM-Based Standard Error for a Sample School

	6.2.3 Calculate MRM-Based Composite Index Across Subjects
	6.2.4 Calculate URM-Based Index Across Subjects
	6.2.5 Calculate the Combined MRM and URM Composite Index Across Subjects
	6.2.6 Multi-Year Composites

	6.3 Principal-Level Composites
	6.3.1 Multiple Principals Reported at a School Per Year
	6.3.2 Composite Calculation


	7 Projection Model
	8 Data Quality and Pre-Analytic Data Processing
	7
	7
	8
	8
	8.1 Data Quality
	8.1 Data Quality
	8.2 Checks of Scaled Score Distributions
	8.2.1 Stretch
	8.2.2 Relevance
	8.2.3 Reliability

	8.3 Data Quality Business Rules
	8.3.1 Missing Grade Levels
	8.3.2 Duplicate (Same) Scores
	8.3.3 Students with Missing Districts or Schools for Some Scores but not Others
	8.3.4 Students with Multiple (Different) Scores in the Same Testing Administration
	8.3.5 Students with Multiple Grade Levels in the Same Subject in the Same Year
	8.3.6 Students with Records That Have Unexpected Grade Level Changes
	8.3.7 Students with Records at Multiple Schools in the Same Test Period
	8.3.8 Outliers

	8.4 Teacher-Student Linkages


