Ohio’s Model Curriculum Mathematics
with Instructional Supports
Math 1 Course
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>STANDARDS FOR MATHEMATICAL PRACTICE—Math 1</td>
<td>9</td>
</tr>
<tr>
<td>MODELING (★)</td>
<td>11</td>
</tr>
<tr>
<td>NUMBER AND QUANTITY (N)</td>
<td>13</td>
</tr>
<tr>
<td>QUANTITIES (N.Q)</td>
<td>13</td>
</tr>
<tr>
<td>Reason quantitatively and use units to solve problems. (N.Q.1-3)</td>
<td>13</td>
</tr>
<tr>
<td>Expectations for Learning</td>
<td>13</td>
</tr>
<tr>
<td>Content Elaborations</td>
<td>14</td>
</tr>
<tr>
<td>Instructional Strategies</td>
<td>15</td>
</tr>
<tr>
<td>Instructional Tools/Resources</td>
<td>15</td>
</tr>
<tr>
<td>ALGEBRA (A)</td>
<td>16</td>
</tr>
<tr>
<td>Seeing structure in expressions (A.SSE)</td>
<td>16</td>
</tr>
<tr>
<td>Interpret the structure of expressions. (A.SSE.1)</td>
<td>16</td>
</tr>
<tr>
<td>Expectations for Learning</td>
<td>16</td>
</tr>
<tr>
<td>Content Elaborations</td>
<td>17</td>
</tr>
<tr>
<td>Instructional Strategies</td>
<td>18</td>
</tr>
<tr>
<td>Instructional Tools/Resources</td>
<td>18</td>
</tr>
<tr>
<td>Write expressions in equivalent forms to solve problems. (A.SSE.3)</td>
<td>19</td>
</tr>
<tr>
<td>Expectations for Learning</td>
<td>19</td>
</tr>
<tr>
<td>Content Elaborations</td>
<td>19</td>
</tr>
<tr>
<td>Instructional Strategies</td>
<td>20</td>
</tr>
<tr>
<td>Instructional Tools/Resources</td>
<td>20</td>
</tr>
</tbody>
</table>
ALGEBRA, CONTINUED (A)

CREATING EQUATIONS (A.CED)

CREATE EQUATIONS THAT DESCRIBE NUMBERS OR RELATIONSHIPS. (A.CED.1-4)

- Expectations for Learning: 21
- Content Elaborations: 22
- Instructional Strategies: 23
- Instructional Tools/Resources: 23

REASONING WITH EQUATIONS AND INEQUALITIES (A.REI)

UNDERSTAND SOLVING EQUATIONS AS A PROCESS OF REASONING AND EXPLAIN THE REASONING. (A.REI.1)

- Expectations for Learning: 24
- Content Elaborations: 25
- Instructional Strategies: 26
- Instructional Tools/Resources: 26

SOLVE EQUATIONS AND INEQUALITIES IN ONE VARIABLE. (A.REI.3)

- Expectations for Learning: 27
- Content Elaborations: 28
- Instructional Strategies: 29
- Instructional Tools/Resources: 29

SOLVE SYSTEMS OF EQUATIONS. (A.REI.5-6)

- Expectations for Learning: 30
- Content Elaborations: 31
- Instructional Strategies: 32
- Instructional Tools/Resources: 32

REPRESENT AND SOLVE EQUATIONS AND INEQUALITIES GRAPHICALLY. (A.REI.10-12)

- Expectations for Learning: 33
- Content Elaborations: 34
- Instructional Strategies: 35
- Instructional Tools/Resources: 35
FUNCTIONS (F)

INTERPRETING FUNCTIONS (F.IF) 36
UNDERSTAND THE CONCEPT OF A FUNCTION, AND USE FUNCTION NOTATION. (F.IF.1-3)
Expectations for Learning 36
Content Elaborations 37
Instructional Strategies 38
Instructional Tools/Resources 38

INTERPRET FUNCTIONS THAT ARISE IN APPLICATIONS IN TERMS OF THE CONTEXT. (F.IF.4-5)
Expectations for Learning 39
Content Elaborations 40
Instructional Strategies 41
Instructional Tools/Resources 41

ANALYZE FUNCTIONS USING DIFFERENT REPRESENTATIONS. (F.IF.7-9)
Expectations for Learning 42
Content Elaborations 43
Instructional Strategies 44
Instructional Tools/Resources 44

BUILDING FUNCTIONS (F.BF)
BUILD A FUNCTION THAT MODELS A RELATIONSHIP BETWEEN TWO QUANTITIES. (F.BF.1-2)
Expectations for Learning 45
Content Elaborations 46
Instructional Strategies 47
Instructional Tools/Resources 47

BUILD NEW FUNCTIONS FROM EXISTING FUNCTIONS. (F.BF.4)
Expectations for Learning 48
Content Elaborations 48
Instructional Strategies 49
Instructional Tools/Resources 49
FUNCTIONS, CONTINUED (F) 50

LINEAR, QUADRATIC, AND EXPONENTIAL MODELS (F.LE) 50

CONSTRUCT AND COMPARE LINEAR, QUADRATIC, AND EXPONENTIAL MODELS, AND SOLVE PROBLEMS. (F.LE.1-2) 50

Expectations for Learning 50
Content Elaborations 51
Instructional Strategies 52
Instructional Tools/Resources 52

INTERPRET EXPRESSIONS FOR FUNCTIONS IN TERMS OF THE SITUATION THEY MODEL. (F.LE.5) 53

Expectations for Learning 53
Content Elaborations 54
Instructional Strategies 55
Instructional Tools/Resources 55

GEOMETRY (G) 56

CONGRUENCE (G.CO) 56

EXPERIMENT WITH TRANSFORMATIONS IN THE PLANE. (G.CO.1-5) 56

Expectations for Learning 56
Content Elaborations 57
Instructional Strategies 58
Instructional Tools/Resources 58

UNDERSTAND CONGRUENCE IN TERMS OF RIGID MOTIONS. (G.CO.6-8) 59

Expectations for Learning 59
Content Elaborations 60
Instructional Strategies 61
Instructional Tools/Resources 61

PROVE GEOMETRIC THEOREMS BOTH FORMALLY AND INFORMALLY USING A VARIETY OF METHODS. (G.CO.9-11) 62

Expectations for Learning 62
Content Elaborations 63
Instructional Strategies 64
Instructional Tools/Resources 64
GEOMETRY, CONTINUED (G)

CONGRUENCE, CONTINUED (G.CO)

MAKE GEOMETRIC CONSTRUCTIONS. (G.CO.12-13)

- Expectations for Learning 65
- Content Elaborations 66
- Instructional Strategies 67
- Instructional Tools/Resources 67

CLASSIFY AND ANALYZE GEOMETRIC FIGURES. (G.CO.14)

- Expectations for Learning 68
- Content Elaborations 69
- Instructional Strategies 70
- Instructional Tools/Resources 70

CIRCLES (G.C)

UNDERSTAND AND APPLY THEOREMS ABOUT CIRCLES. (G.C.2-4)

- Expectations for Learning 71
- Content Elaborations 72
- Instructional Strategies 73
- Instructional Tools/Resources 73

EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS (G.GPE)

USE COORDINATES TO PROVE SIMPLE GEOMETRIC THEOREMS ALGEBRAICALLY AND TO VERIFY SPECIFIC GEOMETRIC STATEMENTS. (G.GPE.5, 7)

- Expectations for Learning 74
- Content Elaborations 75
- Instructional Strategies 76
- Instructional Tools/Resources 76
STATISTICS AND PROBABILITY (S) 77

INTERPRETING CATEGORICAL AND QUANTITATIVE DATA (S.ID) 77
SUMMARIZE, REPRESENT, AND INTERPRET DATA ON A SINGLE COUNT OR MEASUREMENT VARIABLE. (S.ID.1-3) 77
Expectations for Learning 77
Content Elaborations 80
Instructional Strategies 81
Instructional Tools/Resources 81

SUMMARIZE, REPRESENT, AND INTERPRET DATA ON TWO CATEGORICAL AND QUANTITATIVE VARIABLES. (S.ID.5-6) 82
Expectations for Learning 82
Content Elaborations 84
Instructional Strategies 85
Instructional Tools/Resources 85

INTERPRET LINEAR MODELS. (S.ID.7-8) 86
Expectations for Learning 86
Content Elaborations 87
Instructional Strategies 88
Instructional Tools/Resources 88

ACKNOWLEDGEMENTS 89
Introduction

PURPOSE OF THE MODEL CURRICULUM
Just as the standards are required by Ohio Revised Code, so is the development of the model curriculum for those standards. Throughout the development of the standards (2016-17) and the model curriculum (2017-18), the Ohio Department of Education (ODE) has involved educators from around the state at all levels, Pre-K–16. The model curriculum reflects best practices and the expertise of Ohio educators, but it is not a complete curriculum nor is it mandated for use. The purpose of Ohio’s model curriculum is to provide clarity to the standards, a foundation for aligned assessments, and guidelines to assist educators in implementing the standards.

COMPONENTS OF THE MODEL CURRICULUM
The model curriculum contains two sections: Expectations for Learning and Content Elaborations.

Expectations for Learning: This section begins with an introductory paragraph describing the cluster’s position in the respective learning progression, including previous learning and future learning. Following are three subsections: Essential Understandings, Mathematical Thinking, and Instructional Focus.

- **Essential Understandings** are the important concepts students should develop. When students have internalized these conceptual understandings, application and transfer of learning results.
- **Mathematical Thinking** statements describe the mental processes and practices important to the cluster.
- **Instructional Focus** statements are key skills and procedures students should know and demonstrate.

Together these three subsections guide the choice of lessons and formative assessments and ultimately set the parameters for aligned state assessments.

Content Elaborations: This section provides further clarification of the standards, links the critical areas of focus, and connects related standards within a grade or course.

COMPONENTS OF INSTRUCTIONAL SUPPORTS
The Instructional Supports section contains the Instructional Strategies and Instructional Tools/Resources sections which are designed to be fluid and improving over time, through additional research and input from the field. The Instructional Strategies are descriptions of effective and promising strategies for engaging students in observation, exploration, and problem solving targeted to the concepts and skills in the cluster of standards. Descriptions of common misconceptions as well as strategies for avoiding or overcoming them and ideas for adapting instructions to meet the needs of all students are threaded throughout. The Instruction Tools/Resources are links to relevant research, tools, and technology. In our effort to make sure that our Instructional Supports reflect best practices, this section is under revision and will be published in 2018.
Standards for Mathematical Practice—Math 1
The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as students engage with and master new and more advanced mathematical ideas across the grade levels.

MP.1 Make sense of problems and persevere in solving them.
Students persevere when attempting to understand the differences between linear and exponential functions. They make diagrams of geometric problems to help make sense of the problems.

MP.2 Reason abstractly and quantitatively.
Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; of considering the units involved; of attending to the meaning of quantities, not just how to compute them; and of knowing and flexibly using different properties of operations and objects.

MP.3 Construct viable arguments and critique the reasoning of others.
Students use formal and informal proofs to verify, prove, and justify geometric theorems with respect to congruence. These proofs can included paragraph proofs, flow charts, coordinate proofs, two-column proofs, diagrams without words, indirect proofs, or the use of dynamic software.

MP.4 Model with mathematics.
Students apply their mathematical understanding of linear and exponential functions to many real-world problems, such as linear and exponential growth. Students also discover mathematics through experimentation and by examining patterns in data from real-world contexts.

MP.5 Use appropriate tools strategically.
Students develop a general understanding of the graph of an equation or function as a representation of that object, and they use tools such as graphing calculators or graphing software to create graphs in more complex examples, understanding how to interpret the results.

MP.6 Attend to precision.
Students use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem.

Continued on next page
Standards for Mathematical Practice, continued

MP.7 Look for and make use of structure.
Students recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

MP.8 Look for and express regularity in repeated reasoning.
Students see that the key feature of a line in the plane is an equal difference in outputs over equal intervals of inputs, and that the result of evaluating the expression \(\frac{y_2 - y_1}{x_2 - x_1} \) for points on the line is always equal to a certain number \(m \). Therefore, if \((x, y)\) is a generic point on this line, the equation \(m = \frac{y - y_1}{x - x_1} \) will give a general equation of that line.
Modeling

Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as well as creativity.

Some examples of such situations might include the following:

- Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it might be distributed.
- Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other player.
- Designing the layout of the stalls in a school fair so as to raise as much money as possible.
- Analyzing the stopping distance for a car.
- Modeling a savings account balance, bacterial colony growth, or investment growth.
- Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport.
- Analyzing risk in situations such as extreme sports, pandemics, and terrorism.
- Relating population statistics to individual predictions.

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, control, or optimize? What resources of time and tools do we have? The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, spreadsheets and other technology, and algebra are powerful tools for understanding and solving problems drawn from different types of real-world situations.

Continued on next page
Modeling, continued

One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure can sometimes model seemingly different situations. Models can also shed light on the mathematical structures themselves, for example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential function.

The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are a familiar descriptive model—for example, graphs of global temperature and atmospheric CO₂ over time. Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important tool for analyzing such problems. Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be used to model purely mathematical phenomena, e.g., the behavior of polynomials as well as physical phenomena.

Modeling Standards

Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★).
Mathematics Model Curriculum with Instructional Supports

Math 1 Course

Standards

<table>
<thead>
<tr>
<th>Number and Quantity</th>
<th>Model Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason quantitatively and use units to solve problems.</td>
<td></td>
</tr>
<tr>
<td>N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. ★</td>
<td></td>
</tr>
<tr>
<td>N.Q.2 Define appropriate quantities for the purpose of descriptive modeling. ★</td>
<td></td>
</tr>
<tr>
<td>N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. ★</td>
<td></td>
</tr>
</tbody>
</table>

Expectations for Learning

In elementary grades, students use units for distance, time, money, mass, etc. In grades 6, 7, and 8, students work with rates, especially speed, as a quotient of measurements. In this cluster, students extend the use of units to more complicated applications including rates, formulas, interpretation of scale and origin in graphs, data displays, and related applications. Next, students will apply modeling within the context of the algebra concepts studied and begin to develop strategies to solve more complicated mathematical problems.

Essential Understandings

- Units are necessary when representing quantities in a modeling situation to make sense of the problem in context.
- A particular quantity can be represented with units from multiple systems of measurement.
- Quantities in different units of measure can be compared using equivalent units.
- Derived quantities are calculated by multiplying or dividing known quantities, along with their units, e.g., 40 miles in 8 hours is 5 miles per hour.
- Quantities can be converted within a system of units, e.g., feet to inches, and between two systems of units, e.g., feet to meters.
- There are some contexts in which the origin of a graph or data display is essential to show, and other contexts in which the origin of a graph or data display where it is common to omit the origin, e.g., stock prices over time.

Continued on next page
Expectations for Learning, continued

MATHEMATICAL THINKING
- Determine reasonableness of results.
- Attend to the meaning of quantities.
- Consider mathematical units involved in a problem.

INSTRUCTIONAL FOCUS
- When modeling, consider the scale when choosing or deriving suitable units.
- Choose a level of accuracy appropriate for the given context.
- Convert measurements within a system of units, e.g., convert 4.6 feet to inches and feet, or between a two systems of units, e.g., convert 4.6 feet to meters.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- Math 1, Number 1, page 3

CONNECTIONS ACROSS STANDARDS
- Create equations that describe numbers or relationships (A.CED.1-4).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies

This section is under revision and will be published in 2018.

Instructional Tools/Resources

This section is under revision and will be published in 2018.
Algebra

Seeing Structure in Expressions

Interpret the structure of expressions.

A.SSE.1. Interpret expressions that represent a quantity in terms of its context. ★

- **a.** Interpret parts of an expression, such as terms, factors, and coefficients.
- **b.** Interpret complicated expressions by viewing one or more of their parts as a single entity.

Expectations for Learning

Students build expressions in grades K-5 with arithmetic operations. As they move into the middle grades and progress through high school, students build expressions with algebraic components, beginning with linear and exponential expression. Then in Math 2 quadratic expressions. In later courses, they build algebraic expressions with polynomial, rational, radical, and trigonometric expressions. In this cluster, they focus on interpreting the components of linear and exponential expressions and their meaning in mathematical and real-world contexts. They also determine when rewriting or manipulating expressions is helpful in order to reveal different insights into a mathematical or real-world context.

Essential Understandings

- An expression is a collection of terms separated by addition or subtraction.
- A term is a product of a number and a variable raised to a nonnegative integer exponent.
- Components of an expression or expressions within an equation may have meaning in a mathematical context, e.g., \(y = mx + b \), \(b \) represents the \(y \)-intercept.
- Components of an expression may have meaning in a real-world context, e.g., in data surcharges, \(60 + 0.05x \), the 60 represents the fixed costs and the 0.05 represents the cost per unit of data.
- Expressions may potentially be rearranged or manipulated in ways to reveal different insights into the mathematical or real-world context.

Mathematical Thinking

- Attend to the meaning of quantities.
- Use precise mathematical language.
- Apply grade-level concepts, terms, and properties.
- Look for and make use of structure.

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS
- Identify the components, such as terms, factors, or coefficients, of an expression and interpret their meaning in terms of a mathematical or real-world context.
- Explain the meaning of each part of an expression, including linear and simple exponential expressions in a mathematical or real-world context.
- Analyze an expression and recognize that it can be rewritten in different ways.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREA OF FOCUS
- Math 1, Number 1, page 3

CONNECTIONS ACROSS STANDARDS
- Create equations in one or two variables (A.CED.1-2).
- Interpret expressions for functions in terms of the situations they model (F.LE.5).
- Interpret linear models (S.ID.7).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.
STANDARDS

Algebra

SEEING STRUCTURE IN EXPRESSIONS

Write expressions in equivalent forms to solve problems.

A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.★

c. Use the properties of exponents to transform expressions for exponential functions. *For example, \(8^t\) can be written as \(2^{3t}\).*

Expectations for Learning

In middle school, students explore the properties of exponents informally using patterns. In Math 1, students are expected to formally know the properties of exponents and rewrite exponential expressions with integer exponents using properties of exponents. In Math 3, students expand their skills and knowledge to situations involving rational exponents.

Essential Understandings

- Expressions may potentially be rearranged or manipulated in ways to reveal different insights into the mathematical or real-world context.
- Understanding the properties of exponents is essential for rewriting exponential expressions.

Mathematical Thinking

- Plan a solution pathway.
- Determine the appropriate form of an expression in context.

Instructional Focus

Limit exponential expression to expression with integer exponents.

- Determine the appropriate equivalent form of an expression for a given purpose.
- Rewrite exponential expressions by using properties of exponents.

Content Elaborations

Ohio’s High School Critical Area of Focus

- Math 1, Number 1, page 3

Connections Across Standards

- Interpret key features of graphs (F.IF.4).
- Interpret the structure of expressions (A.SSE.1).
- Analyze functions using different representations (F.IF.8).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Expectations for Learning

In middle school, students create simple equations and simple inequalities and use them to solve problems. In this cluster, students extend this knowledge to write equations and inequalities for more complicated situations, focusing on linear and simple exponential equations. Students also rearrange formulas to highlight a particular variable. In Math 2, students model situations that include quadratic equations.

Note: Simple exponential functions include integer exponents only.

ESSENTIAL UNDERSTANDINGS

- Regularity in repeated reasoning can be used to create equations that model mathematical or real-world contexts.
- The graphical solution of a system of equations or inequalities is the intersection of the graphs of the equations or inequalities.
- Solutions to an equation, inequality, or system may or may not be viable, depending on the scenario given.
- A formula relating two or more variables can be solved for one of those variables (the variable of interest) as a shortcut for repeated calculations.

MATHEMATICAL THINKING

- Create a model to make sense of a problem.
- Represent the concept symbolically.
- Plan a solution pathway.
- Determine the reasonableness of results.
- Consider mathematical units and scale when graphing.

Continued on next page
A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.★

b. Focus on formulas in which the variable of interest is linear. For example, rearrange Ohm’s law $V = IR$ to highlight resistance R. (M1)

Expectations for Learning, continued

INSTRUCTIONAL FOCUS

- Given a mathematical or real-world context, express the relationship between quantities by writing an equation or inequality that must be true for the given relationship. Focus on situations where the equations will be linear and exponential.
- For equations or inequalities relating two variables, graph the relationships on coordinate axes with proper labels and scales. Focus on situations where the equations will be linear and exponential.
- Identify the constraints implied by the scenario, and represent them with equations or inequalities.
- Determine the feasibility (possibility) of a solution based upon the constraints implied by the scenario.
- Solve formulas for a given variable.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREA OF FOCUS

- Math 1, Number 1, page 3

CONNECTIONS ACROSS STANDARDS

- Interpret the structure of expressions (A.SSE.1).
- Solve equations and inequalities in one variable (A.REI.3).
- Interpret parameters of linear or exponential functions (F.LE.5).
- Represent and interpret equations and inequalities (including systems) with two variables graphically (A.REI.10).
- Build a function that models a linear or exponential relationship between two quantities (F.BF.1).
- Interpret the slope and intercept of a linear model (S.ID.7).
- Solve systems of equations (A.REI.6).
- Construct and compare linear and exponential models, and solve problems (F.LE.1).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Standards

Algebra

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Model Curriculum

Expectations for Learning

In previous courses, students solve simple equations using a variety of methods and investigate whether a linear equation (8.EE.7) or a system of linear equations (8.EE.8) has one solution, infinitely many solutions, or no solutions. In this cluster, students explain the process for finding a solution for any type of simple equation. Similar to proofs in Math 2, students provide reasons for the steps they follow to solve an equation. In Math 3, students solve simple rational and radical equations and explain why extraneous solutions may arise.

Essential Understandings

- Solving equations is a process of reasoning based on properties of operations and properties of equality.
- Assuming no errors in the equation-solving process,
 - A result that is false (e.g., 0 = 1) indicates the initial equation must have had no solutions; and
 - A result that is always true (e.g., 0 = 0) indicates the initial equation must have been an identity.
- Adding or subtracting the same value or expression to both sides of an equation results in an equivalent equation.
- Multiplying or dividing both sides by the same value or expression (except by 0) results in an equivalent equation.
- The Addition Property of Equality and Subtraction Property of Equality can be used interchangeably, since subtracting a number is the same as adding its opposite.
- The Multiplication Property of Equality and the Division Property of Equality can be used interchangeably (except when multiplying by 0), since dividing a number is the same as multiplying the number by its inverse.

Mathematical Thinking

- Explain mathematical reasoning.
- Plan a solution pathway.

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS

Note: Although, rote memorization of the names of the properties is not encouraged, it is expected for teachers to use formal language so that students gain familiarity and are able to recognize and apply the correct terminology.

- Justify the steps in solving an equation.
- Solve equations in which there is one solution; equations in which there is no solution; and equations in which there are infinitely many solutions.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREA OF FOCUS

- Math 1, Number 3, page 7

CONNECTIONS ACROSS STANDARDS

- Solve linear equations and inequalities in one variable (A.REI.3).
- Create equations that describe numbers or relationship (A.CED.1).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Standards

Algebra

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Model Curriculum

Expectations for Learning

In previous courses, students solve linear equations and inequalities. In this cluster, students extend this knowledge to solve equations with numeric and letter coefficients. In Math 2, students solve quadratic equations (with real solutions) using a variety of methods. In Math 3, students use these skills to solve more complicated equations.

Essential Understandings

- An appropriate solution path can be determined when the equation is linear in the variable of interest.
- When the coefficients of the variable of interest are letters, the solving process is the same as when the coefficients are numbers.

Mathematical Thinking

- Generalize concepts based on properties of equality.
- Solve routine and straightforward problems accurately.
- Plan a solution pathway.
- Solve math problems using appropriate strategies.
- Solve multi-step problems accurately.
- (+) Use formal reasoning with symbolic representation.

Instructional Focus

- Recognize when an equation or inequality is linear in one variable, and plan a solution strategy.
- Solve linear equations and inequalities with coefficients represented by letters.
 - For inequalities, graph solutions sets on a number line.
- Solve compound linear inequalities in one-variable.
 - Graph solution sets on a number line.

Continued on next page
<table>
<thead>
<tr>
<th>Content Elaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHIO’S HIGH SCHOOL CRITICAL AREA OF FOCUS</td>
</tr>
<tr>
<td>- Math 1, Number 3, page 7</td>
</tr>
</tbody>
</table>

CONNECTIONS ACROSS STANDARDS

- Understand solving equations as a process of reasoning (A.REI.1).
- Rearrange formulas to highlight a quantity of interest (A.CED.4).
- Interpret the structure of expression (A.SSE.1).
- Create equations in one variable (A.CED.1).
- Graph the solution of an inequality in two variables (A.REI.12).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
<tr>
<td>STANDARDS</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Algebra</td>
</tr>
<tr>
<td>REASONING WITH EQUATIONS AND INEQUALITIES</td>
</tr>
<tr>
<td>Solve systems of equations.</td>
</tr>
<tr>
<td>A.REI.5 Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.</td>
</tr>
<tr>
<td>A.REI.6 Solve systems of linear equations algebraically and graphically.</td>
</tr>
<tr>
<td>a. Limit to pairs of linear equations in two variables. (A1, M1)</td>
</tr>
<tr>
<td>ESSENTIAL UNDERSTANDINGS</td>
</tr>
<tr>
<td>• The graph of a linear equation is the set of ordered pairs that make the equation true. Therefore, multiplying that equation by a non-zero constant produces an equivalent equation, which has the same set of ordered pairs that make the equation true.</td>
</tr>
<tr>
<td>MATHEMATICAL THINKING</td>
</tr>
<tr>
<td>• Determine reasonableness of results using informal reasoning.</td>
</tr>
<tr>
<td>• Solve multi-step problems accurately.</td>
</tr>
<tr>
<td>• Plan a solution pathway.</td>
</tr>
<tr>
<td>• Use technology strategically to deepen the understanding.</td>
</tr>
<tr>
<td>INSTRUCTIONAL FOCUS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREA OF FOCUS
- Math 1, Number 3, page 7

CONNECTIONS ACROSS STANDARDS
- Solve linear equations in one variable (A.REI.3).
- Graph linear models (F.IF.4, 7).
- Rearrange formulas (A.CED.4).
- Solve systems of equations and inequalities graphically (A.REI.10-12).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.
Mathematics

High School Math 1 Course

STANDARDS

Algebra

REASONING WITH EQUATIONS AND INEQUALITIES

Represent and solve equations and inequalities graphically.

A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

A.REI.11 Explain why the x-coordinates of the points where the graphs of the equation \(y = f(x) \) and \(y = g(x) \) intersect are the solutions of the equation \(f(x) = g(x) \); find the solutions approximately, e.g., using technology to graph the functions, making tables of values, or finding successive approximations.

A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

MODEL CURRICULUM

Expectations for Learning

In prior courses, students graph linear relationships and identify slope and intercepts. In this cluster, students extend this knowledge to include the idea that a graph represents all of the solutions of an equation. Students use graphs and tables of equations in two variables to approximate solutions to equations in one variable. They also graph solutions to linear inequalities in two variables. In Math 3, students similarly study the relationship between the graph and the solutions of rational, radical, absolute value, polynomial, and exponential equations.

ESSENTIAL UNDERSTANDINGS

- A point of intersection of any two graphs represents a solution of the two equations that define the two graphs.
- An equation in one variable can be rewritten as a system of two equations in two variables, by thinking of each side of the equation as a function, i.e., writing \(y = \text{left hand side} \) and \(y = \text{right hand side} \).
 - The approximate solution(s) to an equation in one variable is the x-value(s) of the intersection(s) of the graphs of the two functions.
 - Two-variable graphical and numerical (tabular) techniques to solve an equation with one variable always work and are particularly useful when algebraic methods are not applicable, e.g., \(3x + 4 = 2^x \).
- A half plane represents the solutions of a linear inequality in two variables.
- The intersection of two half planes represents the solution set to two inequalities in two variables.

MATHEMATICAL THINKING

- Use technology strategically to deepen understanding.
- Plan a solution pathway.
- Create a model to make sense of a problem.

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS

- Rewrite a one-variable equation as two separate functions and use the x-coordinate of their intersection point to determine the solution of the original equation.
- Approximate intersections of graphs of two equations using technology, tables of values, or successive approximations (focus on equations with linear and exponential expressions).
- Graph the solution set of a linear inequality in two variables.
- Graph the solution set of a system of linear inequalities in two variables.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREA OF FOCUS

- Math 1, Number 2, pages 4-6

CONNECTIONS ACROSS STANDARDS

- Solve equations in one variable (A.REI.3).
- Create equations in two variables (A.CED.2).
- Graph functions expressed symbolically (F.IF.7).
- Analyze functions using different representations (F.IF.9).
- Solve systems of equations graphically. (A.REI.6a)
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.

STANDARDS

Functions

INTERPRETING FUNCTIONS
Understand the concept of a function, and use function notation.

F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n + 1) = f(n) + f(n - 1) \) for \(n \geq 1 \).

MODEL CURRICULUM

Expectations for Learning
In the eighth grade, students have learned a semi-formal definition of a function and know that a function pairs an input value with an output value. Eighth grade students do not use function notation or the terms domain and range.

In this cluster, students will now expand their understanding of functions to include function notation and the terms domain and range. Also, students will evaluate and interpret functions, including sequences as functions. Distinguishing between relations and functions is not a primary focus.

This cluster is the foundation for all future work with functions.

ESSENTIAL UNDERSTANDINGS
- Function notation illustrates a formal connection between inputs and outputs.
- Functions can be tied to real-world scenarios given by tables, graphs, equations, or verbal descriptions.
- Function notation \(f(x) \) is shorthand for the output of \(f \) when the input is \(x \).
- Function notation, \(f(x) \), is a new representation for students and is articulated as “\(f \) of \(x \)”, and it is not related to multiplication.
- Sequences are functions whose domain is a subset of the integers, paying careful attention to how a sequence is indexed. For example, the sequence may be indexed from 0 to \(n \), from 1 to \(n - 1 \), or something else.
- An arithmetic sequence is a linear function, and a geometric sequence is an exponential function.

MATHEMATICAL THINKING
- Use accurate mathematical vocabulary to describe mathematical reasoning.
- Represent a concept symbolically.
- Determine reasonableness of results.
- Make connections between concepts, terms, and properties within the grade level and with previous grade levels.

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS

- Make connections among different representations (tables, graphs, symbols, and verbal descriptions) of functions, focusing on linear and exponential functions.
- Solve problems with functions represented in tables, graphs, symbols, and verbal descriptions.
- Explain function notation in a real-world context. For example, if \(f(x) \) represents the height of particle at \(x \) seconds, then \(f(1) \) represents the height of the particle at 1 second.
- Interpret number patterns as sequences and their graphs as discrete points. When the number pattern arises from a context, consider whether it is appropriate to “connect the dots.”
- Use function notation to specify sequences, both explicitly and recursively. (Subscript notation is not required.)
- Relate linear functions to arithmetic sequences and relate exponential functions to geometric sequences.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS

- [Math 1, Number 2, pages 4-6](#)

CONNECTIONS ACROSS STANDARDS

- Build a function that models a relationship between two quantities (F.BF.1a, 2).
- Build new functions from existing functions (F.BF.4a).
- Interpret expressions for functions in terms of the situation they model (F.LE.5).
- Construct and compare linear and exponential models, and solve problems (F.LE.2).
- Represent and solve equations and inequalities graphically (A.REI.10).
<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Functions

INTERPRETING FUNCTIONS

Interpret functions that arise in applications in terms of the context.

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include the following: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* ★ (A2, M3)

- **a.** Focus on linear and exponential functions. (M1)

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.* ★

- **a.** Focus on linear and exponential functions. (M1)

Expectations for Learning

In eighth grade, students model linear relations between two quantities; analyze graphs to determine where they are increasing and decreasing; and determine if relations are linear or non-linear.

In this cluster, students interpret additional key features of the graphs and tables of linear and exponential functions only. They also determine the domain of a function by looking at a graph or table. In a real-life scenario students can find the restrictions on the domain.

In Math 2, students apply these concepts to quadratic functions.

Note on differences between standards: In F.IF.4 and F.IF.5, the emphasis is on the context of the problem and on making connections among graphs, tables, and the context. In F.IF.7, the emphasis is on creating a graph given a symbolic representation, and then identifying the key features of the graph and connecting the key features to the symbols.

Essential Understandings

- Key features (as listed in the standard) of a function can be illustrated graphically and interpreted in the context of the problem.
- The sensible domain for a real-world context should be accurately represented in graphs, tables, and symbols.
- Functions can have continuous or discrete domains.

Mathematical Thinking

- Connect mathematical relationships to contextual scenarios.
- Attend to meaning of quantities.
- Determine reasonableness of results.

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS
Remember, in this course, for exponential functions, assessments should focus on integer exponents only.

- For linear functions, represented as tables, graphs, or verbal descriptions, interpret intercepts and rates of change in the contexts of the problems, given tables, graphs, and verbal descriptions.
- For exponential functions, interpret intercepts, growth/decay rates, and end behaviors in the contexts of the problems, given tables, graphs, and verbal descriptions.
- Use written descriptions or inequalities to describe intervals on which a function is increasing/decreasing and/or positive/negative (neither interval notation nor set builder notation are required).
- Determine whether to connect points on a graph based on the context (continuous vs. discrete domain).
- Demonstrate understanding of domain in the context of a real-world problem.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- Math 1, Number 2, pages 4-6

CONNECTIONS ACROSS STANDARDS
- Create equations that describe numbers or relationships (A.CED.2a, 3).
- Represent and solve equations and equations and inequalities graphically (A.REI.10).
- Understand the concept of a function, and use function notation (F.IF.1-3).
- Graph linear functions and indicate intercepts (F.IF.7a).
- Graph simple exponential functions, indicating intercepts, and end behavior (F.IF.7e).
- Interpret expressions for functions in terms of the situation they model (F.LE.5).
- Interpret linear models (S.ID.7).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies

This section is under revision and will be published in 2018.

Instructional Tools/Resources

This section is under revision and will be published in 2018.
<table>
<thead>
<tr>
<th>STANDARDS</th>
<th>MODEL CURRICULUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>Expectations for Learning</td>
</tr>
<tr>
<td>INTERPRETING FUNCTIONS</td>
<td>In eighth grade, students graph and write linear functions, but their knowledge of key features of functions is limited to slope and y-intercept. They are exposed to non-linear functions and can distinguish between linear and non-linear functions. In this cluster, students graph linear and exponential functions given a symbolic representation and indicate intercepts and end behavior. They compare linear and exponential functions given various representations. In Math 2, students graph quadratics and indicate key features. They will compare linear, quadratic, and exponential functions given various representations.</td>
</tr>
<tr>
<td>Analyze functions using different representations.</td>
<td>\textit{Note on differences between standards: In F.IF.4 and F.IF.5, the emphasis is on the context of the problem and on making connections among graphs, tables, and the context. In F.IF.7, the emphasis is on creating a graph given a symbolic representation, then identifying the key features of the graph and connecting the key features to the symbols.}</td>
</tr>
<tr>
<td>F.IF.7 Graph functions expressed symbolically and indicate key features of the graph, by hand in simple cases and using technology for more complicated cases. Include applications and how key features relate to characteristics of a situation, making selection of a particular type of function model appropriate.★</td>
<td>ESSENTIAL UNDERSTANDINGS</td>
</tr>
<tr>
<td>\textbf{a.} Graph linear functions and indicate intercepts. (A1, M1)</td>
<td>• The graph of a linear function shows intercepts and rate of change.</td>
</tr>
<tr>
<td>\textbf{e.} Graph simple exponential functions, indicating intercepts and end behavior. (A1, M1)</td>
<td>• The graph of an exponential function shows the y-intercept and end behaviors.</td>
</tr>
<tr>
<td>F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). \textit{For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.} (A2, M3)</td>
<td>• Function families have commonalities in shapes and features of their graphs.</td>
</tr>
<tr>
<td>\textbf{a.} Focus on linear and exponential functions. (M1)</td>
<td>• Different representations (graphs, tables, symbols, verbal descriptions) illuminate key features of functions and can be used to compare different functions.</td>
</tr>
<tr>
<td></td>
<td>• More generally, writing a function in different ways can reveal different features of the graph of a function.</td>
</tr>
<tr>
<td></td>
<td>MATHEMATICAL THINKING</td>
</tr>
<tr>
<td></td>
<td>• Make connections between concepts, terms, and properties within the grade level and with previous grade levels.</td>
</tr>
<tr>
<td></td>
<td>• Analyze a mathematical model.</td>
</tr>
</tbody>
</table>

\textit{Continued on next page}
Expectations for Learning, continued

INSTRUCTIONAL FOCUS

*Remember, in this course, for exponential functions, assessments should focus on integer exponents only.

- Given symbolic representations of linear and exponential functions, create accurate graphs showing all key features.
- Compare and contrast linear and exponential functions given by graphs, tables, symbols, or verbal descriptions.

Content Elaborations

OHIO'S HIGH SCHOOL CRITICAL AREAS OF FOCUS

- Math 1, Number 2, pages 4-6

CONNECTIONS ACROSS STANDARDS

- Interpret functions that arise in applications in terms of the context (F.IF.4).
- Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line) (A.REI.10).
- Construct and compare linear and exponential models and solve problems (F.LE.1-2).
- Interpret expressions for functions in terms of the situation they model (F.LE.5).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.
Functions

BUILDING FUNCTIONS

Build a function that models a relationship between two quantities.

<table>
<thead>
<tr>
<th>F.BF.1 Write a function that describes a relationship between two quantities.★</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Determine an explicit expression, a recursive process, or steps for calculation from context.</td>
</tr>
<tr>
<td>i. Focus on linear and exponential functions. (A1, M1)</td>
</tr>
</tbody>
</table>

| F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.★ |

Expectations for Learning

In the eighth grade, students create functions to model relationships between two quantities. In this cluster, students write linear and exponential functions symbolically given the relationship between two quantities. Relationships between quantities could be given as tables, graphs, or within a context. Students also write explicit and recursive rules for arithmetic and geometric sequences. In Math 2, students focus on situations that exhibit exponential or quadratic relationships.

Essential Understandings

- Functions can be written as explicit expressions, recursive processes, and in other ways.
- An arithmetic sequence (informally, an addition pattern) has a starting term and a common difference between terms.
- A geometric sequence (informally, a multiplication pattern) has a starting term and a common ratio between terms.
- An arithmetic sequence is a linear function, and a geometric sequence is an exponential function.
- Some sequences can be defined recursively or explicitly, while others cannot be defined by a formula.
- The relationships between quantities can be modeled with functions that are linear, exponential, or neither of these.

Mathematical Thinking

- Make and modify a model to represent mathematical thinking.
- Discern and use a pattern or structure.

Instructional Focus

- Model relationships with linear functions, which may be arithmetic sequences using tables, graphs, symbols, and words in context.
- Model relationships with exponential functions, which may be geometric sequences using tables, graphs, symbols, and words in context.
- Model relationships that are not linear or exponential using tables, graphs, symbols, and words in context.

Continued on next page
<table>
<thead>
<tr>
<th>Content Elaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS</td>
</tr>
<tr>
<td>• Math 1, Number 2, pages 4-6</td>
</tr>
</tbody>
</table>

CONNECTIONS ACROSS STANDARDS

- Create equations that describe numbers or relationships (A.CED.2).
- Fit a linear function for a scatterplot that suggests a linear association (S.ID.6c).
- Interpret linear models (S.ID.7).
- Construct and compare linear and exponential models, and solve problems (F.LE.1).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
<th>This section is under revision and will be published in 2018.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Tools/Resources</td>
<td>This section is under revision and will be published in 2018.</td>
</tr>
<tr>
<td>STANDARDS</td>
<td>MODEL CURRICULUM</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Functions</td>
<td>Expectations for Learning</td>
</tr>
<tr>
<td>BUILDING FUNCTIONS</td>
<td>In eighth grade, students learn that functions map inputs to outputs. In this cluster, students informally reverse this to find the input of a function when the output is known. In later classes, (+) some students more fully develop the concepts, procedures, and notation for inverses of functions.</td>
</tr>
<tr>
<td>Build new functions from existing functions.</td>
<td>ESSENTIAL UNDERSTANDINGS</td>
</tr>
<tr>
<td>F.BF.4 Find inverse functions.</td>
<td>• Sometimes the input of a function can be found when the output is given.</td>
</tr>
<tr>
<td>a. Informally determine the input of a function when the output is known. (A1, M1)</td>
<td>MATHEMATICAL THINKING</td>
</tr>
<tr>
<td></td>
<td>• Explain mathematical reasoning.</td>
</tr>
<tr>
<td>INSTRUCTIONAL FOCUS</td>
<td>INSTRUCTIONAL FOCUS</td>
</tr>
<tr>
<td>* Limit to situations where inverse values are unique. Exclude formal notation; exclude finding the inverse algebraically; exclude switching x and y; exclude reflecting about the line y = x.</td>
<td>• Use graphs and tables to find the input value of a function when given an output, and interpret the values in context.</td>
</tr>
<tr>
<td></td>
<td>Content Elaborations</td>
</tr>
<tr>
<td></td>
<td>OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS</td>
</tr>
<tr>
<td></td>
<td>• Math 1, Number 2, pages 4-6</td>
</tr>
<tr>
<td></td>
<td>CONNECTIONS ACROSS STANDARDS</td>
</tr>
<tr>
<td></td>
<td>• Understand the concept of a function and use function notation (F.IF.1-2).</td>
</tr>
</tbody>
</table>
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
<tr>
<td>Standards</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Functions</td>
</tr>
<tr>
<td>Linear, Quadratic, and Exponential Models</td>
</tr>
<tr>
<td>F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.★</td>
</tr>
<tr>
<td>a. Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.</td>
</tr>
<tr>
<td>b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.</td>
</tr>
<tr>
<td>c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.</td>
</tr>
<tr>
<td>F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).★</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mathematical Thinking</td>
</tr>
<tr>
<td>• Represent a concept symbolically.</td>
</tr>
<tr>
<td>• Make and modify a model to represent mathematical thinking.</td>
</tr>
</tbody>
</table>

continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS

• Aim toward a multifaceted understanding of additive versus multiplicative change across different representations.
• For linear functions (arithmetic sequences), focus on the constant rate of change across the tables, graphs, contexts, and the explicit and recursive representations.
• For exponential functions (geometric sequences), focus on the constant growth/decay rate (or factor) across the tables, graphs, contexts, and the explicit and recursive representations.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS

• Math 1, Number 2, pages 4-6

CONNECTIONS ACROSS STANDARDS

• Build a function that models a relationship between two quantities (F.BF.1a, 2).
• Interpret functions that arise in applications in terms of the context (F.IF.4a, 5a).
• Analyze functions using different representations (F.IF.7a, e).
• Summarize, represent, and interpret data on two categorical and quantitative variables (S.ID.6c).
• Interpret linear models (S.ID.7).
• Interpret the structure of expressions (A.SSE.1).
• Interpret the parameters in a linear or exponential function in terms of a context (F.LE.5).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Functions
LINEAR, QUADRATIC, AND EXPONENTIAL MODELS
Interpret expressions for functions in terms of the situation they model.

F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context. ★

Expectations for Learning
This standard does not present new expectations for student learning. Rather, it emphasizes important habits to complement F.LE.1-3. In this cluster, students connect their understanding of the defining characteristics of linear functions (initial value and rate of change) to the defining characteristics of exponential functions (initial value and growth rate/growth factor) and by interpreting them in the context of a real-world problem.

Essential Understandings
- Linear functions have a constant additive change.
- Exponential functions have a constant multiplicative change.
- Linear and exponential functions both have initial values.
- To highlight the constant growth/decay rate, \(r \), often expressed as a percentage, exponential functions can be written in the form, \(f(n) = a(1 + r)^n \).
- To highlight the growth/decay factor, \(b \), exponential functions can be written in the form, \(f(n) = a(b)^n \).
- An arithmetic sequence is a linear function, and a geometric sequence is an exponential function.

Mathematical Thinking
- Connect mathematical relationships to contextual scenarios.
- Use accurate mathematical vocabulary to describe mathematical reasoning.
- Attend to meaning of quantities.
- Make connections between concepts, terms, and properties within the grade level and with previous grade levels.

Instructional Focus
- For linear functions (arithmetic sequences), focus on the constant rate of change across the tables, graphs, contexts, and the explicit and recursive representations.
- For exponential functions (geometric sequences), focus on the constant growth/decay rate (or factor) across the tables, graphs, contexts, and the explicit and recursive representations.
<table>
<thead>
<tr>
<th>Content Elaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS</td>
</tr>
<tr>
<td>* Math 1, Number 2, pages 4-6</td>
</tr>
</tbody>
</table>

CONNECTIONS ACROSS STANDARDS
- Build a function that models a relationship between two quantities (F.BF.1a, 2).
- Interpret functions that arise in applications in terms of the context (F.IF.4-5).
- Analyze functions using different representations (F.IF.7a, e).
- Summarize, represent, and interpret data on two categorical and quantitative variables (S.ID.6c).
- Interpret linear models (S.ID.7).
- Interpret the structure of expressions (A.SSE.1).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.
<table>
<thead>
<tr>
<th>STANDARDS</th>
<th>MODEL CURRICULUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Expectations for Learning</td>
</tr>
<tr>
<td>High School Math 1 Course</td>
<td>In middle school, students first learn about the basic rigid motions (translations, rotations, and reflections) and verify their properties experimentally. In this cluster, students formalize the notion of a transformation as a function from the plane to itself. Building on their hands-on work, students develop mathematical definitions of the basic rigid motions. These definitions serve as a logical basis for the theorems that students prove in Geometry. An important step in high school is to perform appropriate transformations and give precise descriptions of sequences of basic rigid motions that carry one figure onto another. Transformations provide language to be precise about symmetry; this is the first time students have encountered formal symmetry.</td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
</tr>
<tr>
<td>CONGRUENCE</td>
<td></td>
</tr>
<tr>
<td>Experiment with transformations in the plane.</td>
<td></td>
</tr>
<tr>
<td>G.CO.1 Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and arc length.</td>
<td></td>
</tr>
<tr>
<td>G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch.</td>
<td></td>
</tr>
<tr>
<td>G.CO.3 Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself.</td>
<td></td>
</tr>
<tr>
<td>a. Identify figures that have line symmetry; draw and use lines of symmetry to analyze properties of shapes.</td>
<td></td>
</tr>
<tr>
<td>b. Identify figures that have rotational symmetry; determine the angle of rotation, and use rotational symmetry to analyze properties of shapes.</td>
<td></td>
</tr>
<tr>
<td>G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.</td>
<td></td>
</tr>
<tr>
<td>Continued on next page</td>
<td></td>
</tr>
<tr>
<td>G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using items such as graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Expectations for Learning, continued</td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONAL FOCUS</td>
<td></td>
</tr>
<tr>
<td>- Know precise definitions of basic terms: ray, angle, circle, perpendicular line, parallel line, and line segment.</td>
<td></td>
</tr>
<tr>
<td>- Develop and use appropriate geometric notation.</td>
<td></td>
</tr>
<tr>
<td>- Formalize definitions of basic rigid motions (translations, rotations, and reflections).</td>
<td></td>
</tr>
<tr>
<td>- Perform and identify transformations using a variety of tools.</td>
<td></td>
</tr>
<tr>
<td>- Identify the symmetries shown in a figure (rotational and line symmetries).</td>
<td></td>
</tr>
</tbody>
</table>

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- Math 1, Number 5, pages 9-10

CONNECTIONS ACROSS STANDARDS
- Understand congruence in terms of rigid motion (G.CO.6-8).
- Prove and apply geometric theorems (G.CO.9).
- Make formal geometric constructions (G.CO.12).
- Justify the slope criteria for parallel and perpendicular lines (G.GPE.5).
- Reason quantitatively (N.Q.2-3).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Geometry

CONGRUENCE

Understand congruence in terms of rigid motions.

- **G.CO.6** Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

- **G.CO.7** Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

- **G.CO.8** Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

MODEL CURRICULUM

Expectations for Learning

In middle school, students understand congruence through a sequence of basic rigid motions (reflections, rotations, and translations). In this cluster, students will build on this knowledge to prove that two figures are congruent if there is a sequence of rigid motions carrying one onto the other. The triangle congruence criteria can then be established using the definition of congruence in terms of rigid motions. This is the time when students are first exposed to the criteria for triangle congruence; students should know and be able to use AAS, ASA, SAS, and SSS and understand that the criteria follow from rigid motions.

The student understanding of this cluster begins at van Hiele Level 1 (Analysis) and moves to Level 2 (Informal Deduction/Abstraction).

ESSENTIAL UNDERSTANDINGS

- Two figures are defined to be congruent if one can be mapped onto the other by rigid motions.

MATHEMATICAL THINKING

- Explain mathematical thinking.
- Recognize, apply, and justify mathematical concepts, terms, and their properties.
- Represent concepts symbolically.
- Use formal and informal reasoning.
- Use accurate and precise mathematical vocabulary.

INSTRUCTIONAL FOCUS

- Use rigid transformations to determine if the figures are congruent
- Given congruent triangles, describe the rigid transformations that map one triangle onto the other
- Establish the criteria for triangle congruence (AAS, ASA, SAS, and SSS) in terms of rigid motions.
- Know and be able to use triangle congruence (AAS, ASA, SAS, and SSS) in solving problems.

Continued on next page
Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS

- Math 1, Number 5, pages 9-10

CONNECTIONS ACROSS STANDARDS

- Experiment with transformations in the plane (G.CO.1-5).
- Prove and apply theorems about triangles (G.CO.10).
- Prove and apply theorems about parallelograms (G.CO.11).
- Reason quantitatively (N.Q.2-3)
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
<th>This section is under revision and will be published in 2018.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Tools/Resources</td>
<td>This section is under revision and will be published in 2018.</td>
</tr>
<tr>
<td>STANDARDS</td>
<td>MODEL CURRICULUM</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
</tr>
<tr>
<td>CONGRUENCE</td>
<td></td>
</tr>
<tr>
<td>Prove geometric theorems both formally and informally using a variety of methods.</td>
<td></td>
</tr>
<tr>
<td>G.CO.9 Prove and apply theorems about lines and angles. Theorems include but are not restricted to the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.</td>
<td>Expectations for Learning</td>
</tr>
<tr>
<td>G.CO.10 Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.</td>
<td>In middle school, students informally define and apply the relationships of lines, angles, triangles, and parallelograms. For this cluster, students now develop conjectures and construct valid proofs about lines, angles, triangles, and parallelograms. They should begin with informal proof and work toward formal proof using a variety of methods including coordinate-based methods. Also, students should apply these relationships to real-world settings and to proofs.</td>
</tr>
<tr>
<td>Continued on next page</td>
<td>The student understanding of this cluster begins at van Hiele Level 2 (Informal Deduction/Abstractions) and moves to Level 3 (Deduction).</td>
</tr>
<tr>
<td></td>
<td>ESSENTIAL UNDERSTANDINGS</td>
</tr>
<tr>
<td></td>
<td>• The process of proof can vary from informal to formal reasoning.</td>
</tr>
<tr>
<td></td>
<td>• A proof is a deductive argument that explains why a claim must be true.</td>
</tr>
<tr>
<td></td>
<td>• Proof can rely on formal and informal language; there are many ways to justify a claim, not all of which rely on technical vocabulary.</td>
</tr>
<tr>
<td></td>
<td>• Students should demonstrate a knowledge of the content listed in the standards and be able to apply those concepts in various problem solving settings.</td>
</tr>
<tr>
<td></td>
<td>• Coordinate proof is a method that uses algebraic techniques to prove geometric theorems and properties.</td>
</tr>
<tr>
<td></td>
<td>Continued on next page</td>
</tr>
</tbody>
</table>
G.CO.11 Prove and apply theorems about parallelograms. Theorems include but are not restricted to the following: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Expectations for Learning, continued

MATHEMATICAL THINKING
- Explain mathematical thinking.
- Recognize, apply, and justify mathematical concepts, terms, and their properties.
- Represent concepts symbolically.
- Use formal and informal reasoning.
- Use accurate and precise mathematical vocabulary.
- Plan a solution pathway.
- Make and analyze mathematical conjectures.
- Solve real-world and mathematical problems accurately.
- Create a drawing and add components as appropriate.

INSTRUCTIONAL FOCUS
- Form conjectures about geometric relationships and examine their validity, providing evidence to support or refute the claim.
- Using previously established facts about lines, angles, triangles, and parallelograms, construct a valid argument for why a conjecture is true or not true.
- Solve problems involving lines, angles, triangles, and parallelograms by applying theorems.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- **Math 1, Number 5, pages 9-10**

CONNECTIONS ACROSS STANDARDS
- Experiment with transformations in the plane (G.CO.1, 3, 4).
- Understand congruence in terms of rigid transformations (G.CO.6-8).
- Use coordinates to prove simple geometric theorems algebraically (G.GPE.5).
- Reason quantitatively (N.Q.1-3).
- Create equations that describe relationships (A.CED.1-2).
- Reason with equations by explaining steps (A.REI.1, 3).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
<th>This section is under revision and will be published in 2018.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
<th>This section is under revision and will be published in 2018.</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDS</td>
<td>MODEL CURRICULUM</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
</tr>
<tr>
<td>CONGRUENCE</td>
<td></td>
</tr>
<tr>
<td>Make geometric constructions.</td>
<td></td>
</tr>
<tr>
<td>G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.</td>
<td></td>
</tr>
<tr>
<td>G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.</td>
<td></td>
</tr>
<tr>
<td>Expectations for Learning</td>
<td></td>
</tr>
<tr>
<td>ESSENTIAL UNDERSTANDINGS</td>
<td></td>
</tr>
<tr>
<td>• Construction is a process of reasoning that does not use a scale and does not use measurement.</td>
<td></td>
</tr>
<tr>
<td>• Simple constructions can be used to develop an understanding of mathematical relationships.</td>
<td></td>
</tr>
<tr>
<td>MATHEMATICAl THINKING</td>
<td></td>
</tr>
<tr>
<td>• Make sound decisions about using tools.</td>
<td></td>
</tr>
<tr>
<td>• Strategically use technology to deepen understanding.</td>
<td></td>
</tr>
<tr>
<td>• Plan a pathway to complete constructions.</td>
<td></td>
</tr>
<tr>
<td>• Determine accuracy of results.</td>
<td></td>
</tr>
<tr>
<td>• Create a drawing and add components as appropriate.</td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONAL FOCUS</td>
<td></td>
</tr>
<tr>
<td>• Distinguish between a rough sketch, a careful drawing with measurements, and a construction with compass and straightedge.</td>
<td></td>
</tr>
<tr>
<td>• Use a variety of geometric tools to make precise constructions.</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS

- Math 1, Number 5, pages 9-10

CONNECTIONS ACROSS STANDARDS

- Experiment with transformations in the plane (G.CO.1, 5).
- Understand and apply theorems about circles (G.C.3, (+) 4).
- Prove and apply geometric theorems (G.CO.9-11).
- Reason quantitatively (N.Q.1-3).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies

This section is under revision and will be published in 2018.

Instructional Tools/Resources

This section is under revision and will be published in 2018.
Geometry

CONGRUENCE

Classify and analyze geometric figures.

G.CO.14 Classify two-dimensional figures in a hierarchy based on properties.

Expectations for Learning

In elementary school, students learn to classify two-dimensional figures based on their properties. In middle school, students focus on drawing quadrilaterals and triangles with given conditions. Now in high school, they learn to analyze and relate categories of two-dimensional shapes explicitly based on their properties. Based on analysis of properties, students create hierarchies for two-dimensional figures.

The student understanding of this cluster begins at van Hiele Level 1 (Analysis) and moves to Level 2 (Informal Deduction/Abstraction).

Essential Understandings

- There is a distinction between the definition of a figure and its properties, e.g., side lengths, angles, parallel/perpendicular sides, diagonals, symmetry.
- Figures may be categorized in different ways based on their properties.

Mathematical Thinking

- Use accurate mathematical vocabulary to describe geometric relationships.
- Make connections between terms and properties.
- Recognize, apply, and justify mathematical concepts, terms, and their properties.
- Generalize concepts based on patterns.
- Use formal reasoning.

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS
- Explain the difference between the definition of a figure and its properties.
- Know precise definitions of special polygons, e.g., rhombus, parallelogram, rectangle, square, kite, trapezoid, isosceles trapezoid, equilateral triangle, isosceles triangle, and regular polygon.
- Compare and contrast definitions of quadrilaterals, including both definitions of trapezoids.
- Know and apply properties of special polygons and use them to classify figures.
- Explain the relationships among special quadrilaterals.
- Explain the relationships among special triangles.
- Create hierarchies in order to represent the relationship between pairs of figures and among several figures.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- [Math 1, Number 5, pages 9-10](#)

CONNECTIONS ACROSS STANDARDS
- Prove and apply theorems about quadrilaterals and triangles (G.CO.10-11).
- Justify the slope criteria for parallel and perpendicular lines (G.GPE.5).
- Know precise definitions (G.CO.1).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.
<table>
<thead>
<tr>
<th>STANDARDS</th>
<th>MODEL CURRICULUM</th>
</tr>
</thead>
</table>
| **Geometry**
CIRCLES
Understand and apply theorems about circles.
G.C.2 Identify and describe relationships among angles, radii, chords, tangents, and arcs and use them to solve problems. *Include the relationship between central, inscribed, and circumscribed angles and their intercepted arcs; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.*
G.C.3 Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle.
(+)**G.C.4** Construct a tangent line from a point outside a given circle to the circle.
--- |
| **Expectations for Learning**
In middle school, students have worked with measurements of circles such as circumference and area. In this cluster, students solve problems using the relationships among the arcs and angles created by radii, chords, secants, and tangents. They will also construct inscribed and circumscribed circles of a triangle. In Math 2, students extend their understanding of similarity to circles.
The student understanding of this cluster begins at van Hiele Level 1 (Analysis) and moves to Level 2 (Informal Deduction/Abstraction).
--- |
| **ESSENTIAL UNDERSTANDINGS**
• The measure of an arc is equal to the measure of its corresponding central angle.
• The measure of an inscribed angle is half the measure of its corresponding central angle.
• Inscribed angles on a diameter of a circle are right angles (special case of inscribed angles).
• A tangent is perpendicular to the radius at the point of tangency.
• A secant is a line that intersects a circle at exactly two points.
• A circumscribed angle is created by two tangents to the same circle from the same point outside the circle.
• The center of the circumscribed circle is the point of concurrency of the perpendicular bisectors because it is equidistant from the vertices of the triangle.
• The center of the inscribed circle is the point of concurrency of the angle bisectors because it is equidistant from the sides of the triangle.
• While all triangles can be inscribed in a circle, a quadrilateral can be inscribed in a circle if and only if the opposite angles in the quadrilateral are supplementary.
Continued on next page
Expectations for Learning, continued

MATHEMATICAL THINKING
- Use accurate mathematical vocabulary.
- Make connections between concepts, terms, and properties.
- Recognize, apply, and justify mathematical concepts, terms, and their properties.
- Solve mathematical and real-world problems accurately.
- Determine reasonableness of results.
- Consider mathematical units involved in a problem.
- Make sound decisions about using tools.

INSTRUCTIONAL FOCUS
- Given a diagram, identify radii, chords, secants, and tangents, and the arcs and angles formed by them.
- Solve mathematical and real-world problems involving angles and arcs formed by radii, chords, secants, and tangents.
- Construct the angle bisectors of a triangle to locate the incenter, and then construct the inscribed circle.
- Construct the perpendicular bisectors of a triangle to locate the circumcenter, and then construct the circumscribed circle.
- Provide an informal argument for why the opposite angles of an inscribed quadrilateral are supplementary based on the arcs the angles intercept and their corresponding central angles.
- Solve problems using the property that opposite angles are supplementary for a quadrilateral inscribed in a circle.
- (+) Construct a tangent line from a point outside a given circle to the circle.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- Math 1, Number 7, page 12

CONNECTIONS ACROSS STANDARDS
- Experiment with transformations in the plane (G.CO.1).
- Make geometric constructions (G.CO.12).
- Reason quantitatively, and use units to solve problems (N.Q.1-3).
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

Instructional Strategies
This section is under revision and will be published in 2018.

Instructional Tools/Resources
This section is under revision and will be published in 2018.
<table>
<thead>
<tr>
<th>STANDARDS</th>
<th>MODEL CURRICULUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Expectations for Learning</td>
</tr>
<tr>
<td>EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS</td>
<td>In middle school, students find the distance between two points in a coordinate system; work with linear functions; solve linear equations; and apply the Pythagorean Theorem in the coordinate system. In addition, they use square root symbols to represent solutions to equations, and they evaluate square roots of rational numbers. In this cluster, students use the coordinate system to justify slope criteria for parallel and perpendicular lines and compute perimeters and areas of geometric figures. In Math 2, these strategies are used for proof of geometric relationships and properties and partitioning line segments.</td>
</tr>
<tr>
<td>Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.</td>
<td>The student understanding of this cluster begins at van Hiele Level 2 (Informal Deduction/Abstractions) and moves to Level 3 (Deduction).</td>
</tr>
<tr>
<td>G.GPE.5 Justify the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems, e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point.</td>
<td>ESSENTIAL UNDERSTANDINGS</td>
</tr>
<tr>
<td>G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.★</td>
<td>• Coordinate proof is a method that uses algebraic techniques to prove geometric theorems and properties.</td>
</tr>
<tr>
<td>MATHEMATICAL THINKING</td>
<td>• The slopes of parallel lines are equal, and the product of the slopes of perpendicular lines is (-1), except for horizontal and vertical lines.</td>
</tr>
<tr>
<td>• Use accurate mathematical vocabulary to represent geometric relationships.</td>
<td></td>
</tr>
<tr>
<td>• Make connections between terms and formulas.</td>
<td></td>
</tr>
<tr>
<td>• Recognize, apply, and justify mathematical concepts, terms, and their properties.</td>
<td></td>
</tr>
<tr>
<td>• Compute using strategies or models.</td>
<td></td>
</tr>
<tr>
<td>• Determine reasonableness of results.</td>
<td></td>
</tr>
<tr>
<td>• Solve multi-step problems accurately.</td>
<td></td>
</tr>
<tr>
<td>• Discern and use a pattern or structure.</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Expectations for Learning, continued

INSTRUCTIONAL FOCUS
- Know and use the distance formula.
- Justify the slope criteria for parallel and perpendicular lines.
- Write equations of parallel and perpendicular lines.
- Solve geometric problems using the slopes of parallel and perpendicular lines.
- Use coordinates to compute perimeters and areas.

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- Math 1, Number 6, page 11

CONNECTIONS ACROSS STANDARDS
- Know precise definitions (G.CO.1).
- Prove geometric theorems (G.CO.9-10).
- Understand and apply theorems about circles (G.C.2-4).
- Represent and solve equations graphically (A.REI.10).
- Create equations that describe numbers or relationships (A.CED.2, 4).
- Relate parallel and perpendicular lines as a system of equations (A.REI.5).
<table>
<thead>
<tr>
<th>Instructional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Tools/Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
STATISTICAL AND PROBABILITY

INTERPRETING CATEGORICAL AND QUANTITATIVE DATA

Summarize, represent, and interpret data on a single count or measurement variable.

S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box plots) in the context of real-world applications using the GAISE model.

S.ID.2 In the context of real-world applications by using the GAISE model, use statistics appropriate to the shape of the data distribution to compare center (median and mean) and spread (mean absolute deviation, interquartile range, and standard deviation) of two or more different data sets.

S.ID.3 In the context of real-world applications by using the GAISE model, interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

MODEL CURRICULUM

Expectations for Learning

In middle school students learn about the framework of the GAISE model of statistical problem solving. It consists of four steps: Formulating Questions; Collecting Data; Analyzing Data; and Interpreting Results. Students integrate this model whenever they use statistical reasoning. This process will continue throughout high school as students deepen their statistical reasoning skills. Middle school students create dot plots, histograms, and box plots and draw informal comparisons between two populations using graphs. They also summarize data sets using mean absolute deviation. In Math 1 students should use and expand their learning to more sophisticated problems and by comparing single or multiple data sets through graphical representations. Standard deviation is a new concept for students, and it builds upon their previous understanding of mean absolute deviation (MAD). In Math 3, students then extend their knowledge of mean and standard deviation from Math 1 to normal distributions.

The GAISE Model

Students will use the GAISE Model framework for statistical problem solving in all courses. The GAISE Model should not be taught in isolation. Students are building on the framework that was developed in middle school. As students progress through the courses, the learning will move towards a greater level of precision and complexity. Students in middle school start at Level A and move towards Level B. As students progress from Level A to Levels B and C, the learning becomes less teacher-driven and more student-driven.

In this cluster students are at Level B moving towards Level C, and Steps 1 and 2 continue to be emphasized with added depth on Steps 3 and 4. “Understanding the statistical concepts of GAISE model Level B enables a student to grow in appreciation that data analysis is an investigative process consisting of formulating their own questions; collecting appropriate data through various sources; analyzing data through graphs and simple summary measures; and interpreting results with an eye toward inference to a population based on a sample” (Guideline for Assessment and Instruction in Statistics Education (GAISE) Report, 2007, page 58).

Continued on next page
Expectations for Learning, continued

The GAISE Model, continued

Step 1: Formulate the Question
- Students should pose their own statistical question of interest (Level C).
- Students are starting to form questions that allow for generalizations of a population (Level B-C).

Step 2: Collect Data
- Students should begin to use random selection or random assignment (Level B).

Step 3: Analyze Data
- Students measure variability within a single group using MAD, IQR, and/or standard deviation (Level B).
- Students compare measures of center and spread between groups using displays and values (Level B).
- Students describe potential sources of error (Level B).
- Students understand and use particular properties of distributions as tools of analysis moving toward using global characteristics of distributions (Level B-C).

Step 4: Interpret Results
- Students acknowledge that looking beyond the data is feasible by interpreting differences in shape, center, and spread (Level B).
- Students determine if a sample is representative of a population and start to move towards generalization (Level B-C).
- Students note the difference between two groups with different conditions (Level B).

Continued on next page
Expectations for Learning, continued

ESSENTIAL UNDERSTANDINGS

- Univariate quantitative data can be represented using dot plots, box plots, and histograms.
- Mean and median are approximately equal for symmetric distributions, but tend to be different for nonsymmetric distributions.
- Standard deviation is a measure of variation from the mean (spread).
- Extreme values (outliers) have an effect on the shape, center, and spread of a distribution.
 - The median and interquartile range are appropriate measures of center and spread if the distribution is extremely skewed or has outliers.
 - The mean and standard deviation are appropriate measures of center and spread if the distribution is not skewed and has no extreme outliers.

MATHEMATICAL THINKING

- Use accurate and precise mathematical vocabulary.
- Construct formal and informal arguments to verify claims and justify conclusions.
- Solve real-world and statistical problems.
- Use appropriate tools to display and analyze data.

Continued on next page
<table>
<thead>
<tr>
<th>Expectations for Learning, continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUCTIONAL FOCUS</td>
</tr>
<tr>
<td>• Compare the mean to the median of the same data set and relate them to the shape of the distribution (symmetric, skewed).</td>
</tr>
<tr>
<td>• Develop the formula for and a conceptual understanding of standard deviation by building on the conceptual understanding and formula of mean absolute deviation.</td>
</tr>
<tr>
<td>• Compare two or more distributions based upon their means and standard deviations.</td>
</tr>
<tr>
<td>• Explain how outliers affect the mean, the median, and standard deviation.</td>
</tr>
<tr>
<td>• Given two or more data sets or graphs, do the following:</td>
</tr>
<tr>
<td>o Compare the shape (symmetric, skewed, uniform).</td>
</tr>
<tr>
<td>o Compare the spread (greater than, less than, equal).</td>
</tr>
<tr>
<td>o Compare the centers (mean, median).</td>
</tr>
<tr>
<td>• Interpret the mean, standard deviation, outliers, as well as differences and similarities between two or more sets of data within a context.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content Elaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS</td>
</tr>
<tr>
<td>• Math 1, Number 4, page 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THE GAISE MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GAISE Model, pages 14 – 15</td>
</tr>
<tr>
<td>o Focus of the cluster for Math 1 is Level B, pages 37-60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTIONS ACROSS STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Summarize, represent, and interpret data on two categorical and quantitative variables (S.ID.5-6).</td>
</tr>
</tbody>
</table>
INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM

<table>
<thead>
<tr>
<th>Instructional Strategies</th>
<th>This section is under revision and will be published in 2018.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Tools/Resources</td>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Statistics and Probability

INTERPRETING CATEGORICAL AND QUANTITATIVE DATA

Summarize, represent, and interpret data on two categorical and quantitative variables.

S.ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. ★

S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. ★

c. Fit a linear function for a scatterplot that suggests a linear association. (A1, M1)

Model Curriculum

Expectations for Learning

For this cluster, the GAISE Model framework continues to be used: Formulating Questions; Collecting Data; Analyzing Data; and Interpreting Results. In the middle grades, students visually approximate a linear model and informally judge its goodness of fit. In Math 1, students extend this knowledge to find the equation of a linear model, with and without technology. They will also use more precise language to describe the relationship between variables. In Math 3, concepts extend to quadratic and exponential functions as well as working with residuals.

The learning at this level is at the developmental Level B. See pages 77-78 for more information on Level B.

Essential Understandings

Note: Students should be able to talk sensibly about the meanings of joint, marginal, and conditional frequencies within a context but should not be held responsible for precise usage of this vocabulary.

- Row totals and column totals constitute the marginal frequencies.
- Individual table entries represent joint frequencies.
- A relative frequency is found by dividing the frequency count by the total number of observations for a whole set or subset.
 - A marginal relative frequency is calculated by dividing the row (or column) total by the table total.
 - A joint relative frequency is calculated by dividing the table entry by the table total.
 - A conditional relative frequency is calculated by restricting to one row or one column of the table.
- Relative frequencies are useful in considering association between two categorical variables.
- A linear function can be used as a model for a linear association of two quantitative variables.

Continued on next page
Expectations for Learning, continued

MATHEMATICAL THINKING
- Use accurate and precise mathematical vocabulary.
- Construct formal and informal arguments to verify claims and justify conclusions.
- Solve real-world and statistical problems.
- Use appropriate tools to display and analyze data.
- Accurately make computations using data.
- Determine reasonableness of predictions.

INSTRUCTIONAL FOCUS

Categorical Data
- Calculate and interpret, within a context, joint, marginal, and conditional relative frequencies.
- Recognize possible relationships (trends) in the context of the data by using percentages from two-way frequency tables.

Quantitative Data
- Describe, within a context, how variables are related in a linear relationship using scatter plots.
- Calculate and interpret, within a context, the slope and y-intercept of a linear model, given a set of data or graph, with or without technology.

Continued on next page
Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- [Math 1, Number 4, page 8](#)

THE GAISE MODEL
- [GAISE Model, pages 14 – 15](#)
 - Focus of this cluster for Math 1 is Level B moving toward Level C, pages 37-60

CONNECTIONS ACROSS STANDARDS
- Interpret linear models (S.ID.7-8).
- Build a function that models a relationship between two quantities (F.BF.1).
- Distinguish between situations that can be modeled with linear and exponential functions (F.LE.1).
- Create equations that describe numbers or relationships (A.CED.2).
<table>
<thead>
<tr>
<th>INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Strategies</td>
</tr>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
<tr>
<td>Instructional Tools/Resources</td>
</tr>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Standards

Statistics and Probability

Interpreting Categorical and Quantitative Data

- **S.ID.7** Interpret linear models.
- **S.ID.8** Compute (using technology) and interpret the correlation coefficient of a linear fit.

Expectations for Learning

In middle school, students interpret the slope and y-intercept of a linear model. In Math 1, students build on this knowledge with more sophisticated problems. Since scales may vary, students require a deeper conceptual understanding of slope. They also need to recognize when the y-intercept is not always meaningful in the context of the data. This leads to the computation and interpretation of the correlation coefficient and its interpretation. In Math 3, students are introduced to and explore the distinction between correlation and causation.

The learning of standard S.ID.7 is at the developmental Level B. The learning of standard S.ID.8 is at developmental Level C. See pages 77-78 for more information on Level B, and see the Algebra 2/Math 3 Model Curriculum for more information on Level C.

Essential Understandings

- In a linear model, the slope represents the change in the predicted value for every one unit of increase in the independent (x) variable.
- When appropriate, the y-intercept represents the predicted value of the dependent variable when $x = 0$.
- In a linear model, the y-intercept may not always be appropriate for the context.
- The correlation coefficient (r) is a measure of the strength of a linear association in the data. Correlation coefficients are between -1 and 1, inclusive.
 - If r is close to 0, then there is a weak correlation.
 - If r is close to 1, then there is a strong correlation with a positive slope.
 - If r is close to -1, then there is a strong correlation with a negative slope.

Continued on next page
Expectations for Learning, continued

MATHEMATICAL THINKING
- Use accurate and precise mathematical vocabulary.
- Construct formal and informal arguments to verify claims and justify conclusions.
- Solve real-world and statistical problems.
- Use appropriate tools to display and analyze data.
- Determine reasonableness of predictions.

INSTRUCTIONAL FOCUS
- Given a linear model, interpret the slope and the y-intercept within a context.
- Compute, with technology, and interpret correlation coefficient (r).

Content Elaborations

OHIO’S HIGH SCHOOL CRITICAL AREAS OF FOCUS
- Math 1, Number 4, page 8

THE GAISE MODEL
- GAISE Model, pages 14 – 15
 - The focus of S.ID.7 is at Level B for Math 1, pages 37-60
 - The focus of S.ID.8 is at Level C for Math 1, pages 61-85

CONNECTIONS ACROSS STANDARDS
- Interpret the structure of functions (F.IF.4).
- Construct linear models, and solve problems (F.LE.1-2).
- Interpret expressions for functions in terms of context (F.LE.5).
- Build a function that models a relationship between two quantities (F.BF.1).
- Summarize, represent, and interpret data in two categories and quantitative variables (S.ID.6).
<table>
<thead>
<tr>
<th>INSTRUCTIONAL SUPPORTS FOR THE MODEL CURRICULUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Strategies</td>
</tr>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
<tr>
<td>Instructional Tools/Resources</td>
</tr>
<tr>
<td>This section is under revision and will be published in 2018.</td>
</tr>
</tbody>
</table>
Acknowledgements

Meghan Arnold
Teacher,
Miami East Local Schools, SW

Garry Barhorst
Teacher,
Clark-Shawnee Local Schools, SW

Alex Blohm
Teacher,
South-Western City Schools, C

Daniel Brahier
Higher Education,
Bowling Green State University, NW

Dana Butto
Curriculum Specialist/Coordinator,
Trumbull County ESC, NE

Margie Coleman (AC)
Teacher,
Kings Local Schools, SW

Kathleen Cooey
Curriculum Specialist/Coordinator,
West Geauga Local Schools, NE

Elizabeth Cors
Teacher,
Wooster City Schools, NE

Danielle Cummings
Teacher,
Dayton City Schools, SW

Brett Doudican
Teacher,
Dayton Early College, SW

Erika Draiss
Teacher,
Celina City Schools, NW

Diane Farmer
Teacher,
Cleveland Catholic Dioceses, NE

Shari Fergusen
Teacher,
Tri-County North Local Schools, SW

Brad Findell (AC)
Higher Education,
Ohio State University, C

Ali Fleming (WG)
Teacher,
Bexley City Schools, C

Amy Geiger
Teacher,
Greenon Local Schools, SW

Christian Hamman
Curriculum Specialist/Coordinator,
Medina City Schools, NE

Gary Herman (WG)
Curriculum Specialist/Coordinator,
Putnam County ESC, NW

Aryn Hinkle
Teacher,
Perrysburg Exempted Village, NW

Luci Howard
Teacher,
London City Schools, C

Steven Ingrassia
Teacher,
Newbury Local Schools, NE

Margaret (Peggy) Kasten (AC)
Retired Educator, C

Endora Kight Neal (WG)
Curriculum Specialist/Coordinator,
Cleveland Metropolitan School District, NE

John Kramer
Teacher,
Flex High Charter School, C

Robert Krauss
Teacher,
Manchester Local School District, SW

Jill Madonia (WG)
Retired Educator,
Akron Public Schools, NE

Emily Meister
Teacher,
Grandview Heights Schools, C

Stephen Miller
Curriculum Specialist/Coordinator,
Summit County ESC, NE

Stephanie Minor
Teacher,
Worthington School District, C

Rachel Newell
Teacher,
Perrysburg Exempted Village, NW

Tara Nicely
Teacher,
Chillicothe City Schools, C

Marla Norman
Teacher,
Lebanon City Schools, SW
Acknowledgements, continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zachary Patterson</td>
<td>Teacher, Columbus City Schools, C</td>
</tr>
<tr>
<td>Steve Phelps</td>
<td>Teacher, Madeira City Schools, SW</td>
</tr>
<tr>
<td>Stephanie Putzier</td>
<td>Curriculum Specialist/Coordinator, Mahoning County ESC, NE</td>
</tr>
<tr>
<td>Scott Reveal</td>
<td>Teacher, Adams County Ohio Valley Schools, SW</td>
</tr>
<tr>
<td>Tess Rivero (WG)</td>
<td>Teacher, Bellbrook-Sugarcreek Local Schools, SW</td>
</tr>
<tr>
<td>Parameswaran Sivagurunathan</td>
<td>Teacher, Cleveland Metropolitan School District, NE</td>
</tr>
<tr>
<td>Melanie Stanley</td>
<td>Teacher, Gallia County Local Schools, SE</td>
</tr>
<tr>
<td>Patricia Talarczyk</td>
<td>Teacher, Mentor Exempted Village, NE</td>
</tr>
<tr>
<td>Heather VerStreate</td>
<td>Teacher, Mason City Schools, SW</td>
</tr>
<tr>
<td>Jennifer Walls (WG)</td>
<td>Teacher, Akron Public Schools, NE</td>
</tr>
<tr>
<td>Toby West</td>
<td>Curriculum Specialist/Coordinator, Delaware City Schools, C</td>
</tr>
<tr>
<td>Verdie Williams</td>
<td>Teacher, Pickaway Ross Joint Vocational School District, C</td>
</tr>
<tr>
<td>Richelle Zbinden</td>
<td>Teacher, Miami Valley Career Technology Center, SW</td>
</tr>
</tbody>
</table>

*(WG) refers to a member of the Working Group and (AC) refers to a member of the Advisory Committee in the Standards Revision Process.