Standards for Mathematical Practice - Kindergarten

The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as they engage with and master new and more advanced mathematical ideas across the grade levels.

MP. 1 Make sense of problems and persevere in solving them.

In Kindergarten, students begin to build the understanding that doing mathematics involves solving problems and discussing how they solved them. Students explain to themselves the meaning of a problem and look for ways to solve it. Real-life experiences should be used to support students' ability to connect mathematics to the world. To help students connect the language of mathematics to everyday life, ask students questions such as "How many students are absent?" or have them gather enough blocks for the students at their table. Younger students may use concrete objects or pictures to help them conceptualize and solve problems. They may check their thinking by asking themselves, "Does this make sense?" or they may try another strategy.

MP. 2 Reason abstractly and quantitatively.

Younger students begin to recognize that a number represents a specific quantity. Then, they connect the quantity to written symbols. Quantitative reasoning entails creating a representation of a problem while attending to the meanings of the quantities. For example, a student may write the numeral 11 to represent an amount of objects counted, select the correct number card 17 to follow 16 on a calendar, or build two piles of counters to compare the numbers 5 and 8 . In addition, kindergarten students begin to draw pictures, manipulate objects, or use diagrams or charts to express quantitative ideas. Students need to be encouraged to answer questions such as "How do you know?", which reinforces their reasoning and understanding and helps student develop mathematical language.

MP. 3 Construct viable arguments and critique the reasoning of others.

Younger students construct arguments using concrete referents, such as objects, pictures, drawings, and actions. They also begin to develop their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?" and "Why is that true?" They explain their thinking to others and respond to others' thinking. They begin to develop the ability to reason and analyze situations as they consider questions such as "Are you sure that ___?", "Do you think that would happen all the time?", and "I wonder why \qquad ?"

MP. 4 Model with mathematics.

In early grades, students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, acting out, making a chart or list, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. For example, a student may use cubes or tiles to show the different number pairs for 5 , or place three objects on a 10 -frame and then determine how many more are needed to "make a ten." Students rely on manipulatives (or other visual and concrete representations) while solving tasks and record an answer with a drawing or equation.

[^0]
MP. 5 Use appropriate tools strategically.

Younger students begin to consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, kindergarteners may decide that it might be advantageous to use linking cubes to represent two quantities and then compare the two representations side-by-side or later, make math drawings of the quantities. Students decide which tools may be helpful to use depending on the problem or task and explain why they use particular mathematical tools.

MP. 6 Attend to precision.

Kindergarten students begin to develop precise communication skills, calculations, and measurements. Students describe their own actions, strategies, and reasoning using gradelevel appropriate vocabulary. Opportunities to work with pictorial representations and concrete objects can help students develop understanding and descriptive vocabulary. For example, students describe and compare two- and three-dimensional shapes and sort objects based on appearance. While measuring objects iteratively (repetitively), students check to make sure that there are no gaps or overlaps. During tasks involving number sense, students check their work to ensure the accuracy and reasonableness of solutions. Students should be encouraged to answer questions such as, "How do you know your answer is reasonable?"

MP. 7 Look for and make use of structure.

Younger students begin to discern a pattern or structure in the number system. For instance, students recognize that $3+2=5$ and $2+3=5$. Students use counting strategies, such as counting on, counting all, or taking away, to build fluency with facts to 5 . Students notice the written pattern in the "teen" numbers-that the numbers start with 1 (representing 1 ten) and end with the number of additional ones. Teachers might ask, "What do you notice when \qquad ?"

MP. 8 Look for and express regularity in repeated reasoning.

In the early grades, students notice repetitive actions in counting, computations, and mathematical tasks. For example, the next number in a counting sequence is 1 more when counting by ones and 10 more when counting by tens (or 1 more group of 10). Students should be encouraged to answer questions such as, "What would happen if \qquad ?" and "There are 8 crayons in the box. Some are red and some are blue. How many of each could there be?" Kindergarten students realize 8 crayons could include 4 of each color $(8=4+4)$, 5 of one color and 3 of another $(8=5+3)$, and so on. For each solution, students repeatedly engage in the process of finding two numbers to join together to equal 8.

Standards for Mathematical Practice - Grade 1

The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as they engage with and master new and more advanced mathematical ideas across the grade levels.

MP. 1 Make sense of problems and persevere in solving them.

In first grade, students realize that doing mathematics involves solving problems and discussing how they solved them. Students explain to themselves the meaning of a problem and look for ways to solve it. Younger students may use concrete objects or pictures to help them conceptualize and solve problems. They may check their thinking by asking themselves, "Does this make sense?" They are willing to try other approaches.

MP. 2 Reason abstractly and quantitatively.

Younger students recognize that a number represents a specific quantity. They connect the quantity to written symbols. Quantitative reasoning entails creating a representation of a problem while attending to the meanings of the quantities.

In first grade students make sense of quantities and relationships while solving tasks. They represent situations by decontextualizing tasks into numbers and symbols. For example, "There are 60 children on the playground and some children go line up. If there are 20 children still playing, how many children lined up?" Students translate the situation into the equation: $60-20=\square$ and then solve the task. Students also contextualize situations during the problem-solving process. For example, students refer to the context of the task to determine they need to subtract 20 from 60 because the total number of children on the playground is the total number less the 20 that are still playing. Students might also reason about ways to partition two-dimensional geometric figures into halves and fourths.

MP. 3 Construct viable arguments and critique the reasoning of others.

First graders construct arguments using concrete referents, such as objects, pictures, drawings, and actions. They also practice their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?", "Explain your thinking.", and "Why is that true?" They not only explain their own thinking, but listen to others' explanations. They decide if the explanations make sense and ask questions. For example, "There are 15 books on the shelf. If you take some books off the shelf and there are now 7 left, how many books did you take off the shelf?" Students might use a variety of strategies to solve the task and then share and discuss their problem-solving strategies with their classmates.

MP. 4 Model with mathematics.

In early grades, students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, acting out, making a chart or list, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed.

First grade students model real-life mathematical situations with a number sentence or an equation and check to make sure equations accurately match the problem context. Students use concrete models and

MP. 4 Model with mathematics (continued).

pictorial representations while solving tasks and also write an equation to model problem situations. For example, to solve the problem, "There are 11 bananas on the counter. If you eat 4 bananas, how many are left?" students could write the equation $11-4=7$. Students also create a story context for an equation such as $13-7=6$.

MP. 5 Use appropriate tools strategically.

In first grade, students begin to consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, first graders decide it might be best to use colored chips to model an addition problem.

In first grade students use tools such as counters, place value (base ten) blocks, hundreds number boards, number lines, concrete geometric shapes (e.g., pattern blocks, 3-dimensional solids), and virtual representations to support conceptual understanding and mathematical thinking. Students determine which tools are the most appropriate to use. For example, when solving $12+8=\square$, students explain why place value blocks are more appropriate than counters.

MP. 6 Attend to precision.

As young children begin to develop their mathematical communication skills, they try to use clear and precise language in their discussions with others and when they explain their own reasoning. In grade one, students use precise communication, calculation, and measurement skills. Students are able to describe their solutions strategies to mathematical tasks using grade-level appropriate vocabulary, precise explanations, and mathematical reasoning. When students measure objects iteratively (repetitively), they check to make sure there are no gaps or overlaps. Students regularly check their work to ensure the accuracy and reasonableness of solutions.

MP. 7 Look for and make use of structure.

First graders begin to discern a pattern or structure. For instance, if students recognize $12+3=15$, then they also know $3+12=15$. (Commutative property of addition.) To add $4+6+4$, the first two numbers can be added to make a ten, so $4+6+4=10+4=14$.

While solving addition problems, students begin to recognize the commutative property, for example $7+4=11$, and $4+7=11$. While decomposing two-digit numbers, students realize that any two-digit number can be broken up into tens and ones, e.g. $35=30+5,76=70$ +6 . Grade one students make use of structure when they work with subtraction as a missing addend problem, such as $13-7=\square$ can be written as $7+\square=13$ and can be thought of as how much more do I need to add to 7 to get to 13 ?

MP. 8 Look for and express regularity in repeated reasoning.

Grade one students begin to look for regularity in problem structures when solving mathematical tasks. For example, students add three one-digit numbers by using strategies such as "make a ten" or doubles. Students recognize when and how to use strategies to solve similar problems. For example, when evaluating $8+7+2$, a student may say, "I know that 8 and 2 equals 10, then I add 7 to get to 17 . It helps if I can make a 10 out of two numbers when I start." Students use repeated reasoning while solving a task with multiple correct answers. For example, solve the problem, "There are 12 crayons in the box. Some are red and some are blue. How many of each could there be?" Students use repeated reasoning to find pairs of numbers that add up to 12 (e.g., the 12 crayons could include 6 of each color $(6+6=12), 7$ of one color and 5 of another ($7+5=12$), etc.)

Standards for Mathematical Practice - Grade 2

The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as they engage with and master new and more advanced mathematical ideas across the grade levels.

MP. 1 Make sense of problems and persevere in solving them.

In second grade, students realize that doing mathematics involves solving problems and discussing how they solved them. Students explain to themselves the meaning of a problem and look for ways to solve it. They may use concrete objects or pictures to help them conceptualize and solve problems. They may check their thinking by asking themselves, "Does this make sense?" They make conjectures about the solution and plan out a problem-solving approach. An example for this might be giving a student an equation and having him/her write a story to match.

MP. 2 Reason abstractly and quantitatively.

Younger students recognize that a number represents a specific quantity. They connect the quantity to written symbols. Quantitative reasoning entails creating a representation of a problem while attending to the meanings of the quantities. Second graders begin to know and use different properties of operations and relate addition and subtraction to length.

In second grade students represent situations by decontextualizing tasks into numbers and symbols. For example, in the task, "There are 25 children in the cafeteria, and they are joined by 17 more children. How many students are in the cafeteria?" Students translate the situation into an equation, such as: $25+17=\square$ and then solve the problem. Students also contextualize situations during the problem-solving process. For example, while solving the task above, students might refer to the context of the task to determine that they need to subtract 19 if 19 children leave.

MP. 3 Construct viable arguments and critique the reasoning of others.

Second graders may construct arguments using concrete referents, such as objects, pictures, drawings, and actions. They practice their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?", "Explain your thinking.", and "Why is that true?" They not only explain their own thinking, but listen to others' explanations. They decide if the explanations make sense and ask appropriate questions.

Students critique the strategies and reasoning of their classmates. For example, to solve 74 18, students may use a variety of strategies, and after working on the task, they might discuss and critique each other's' reasoning and strategies, citing similarities and differences between various problem-solving approaches.

MP. 4 Model with mathematics.

In early grades, students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, acting out, making a chart or list, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed.

MP. 4 Model with mathematics (continued).

In grade two students model real-life mathematical situations with a number sentence or an equation and check to make sure that their equation accurately matches the problem context. They use concrete manipulatives and pictorial representations to explain the equation. They create an appropriate problem situation from an equation. For example, students create a story problem for the equation $43+17=\square$ such as "There were 43 gumballs in the machine. Tom poured in 17 more gumballs. How many gumballs are now in the machine?"

MP. 5 Use appropriate tools strategically.

In second grade, students consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be better suited. For instance, second graders may decide to solve a problem by drawing a picture rather than writing an equation.

Students may use tools such as snap cubes, place value (base ten) blocks, hundreds number boards, number lines, rulers, virtual manipulatives, and concrete geometric shapes (e.g., pattern blocks, three-dimensional solids). Students understand which tools are the most appropriate to use. For example, while measuring the length of the hallway, students can explain why a yardstick is more appropriate to use than a ruler.

MP. 6 Attend to precision.

As children begin to develop their mathematical communication skills, they try to use clear and precise language in their discussions with others and when they explain their own reasoning.

Second grade students communicate clearly, using grade-level appropriate vocabulary accurately and precise explanations and reasoning to explain their process and solutions. For example, while measuring an object, students carefully line up the tool correctly to get an accurate measurement. During tasks involving number sense, students consider if their answer is reasonable and check their work to ensure the accuracy of solutions.

MP. 7 Look for and make use of structure.

Second grade students look for patterns and structures in the number system. For example, students notice number patterns within the tens place as they connect skip counting by 10 s to corresponding numbers on a 100s chart. Students see structure in the base-ten number system as they understand that 10 ones equal a ten, and 10 tens equal a hundred. Students adopt mental math strategies based on patterns (making ten, fact families, doubles). They use structure to understand subtraction as a missing addend problems (e.g., $50-33=\square$ can be written as $33+\square=50$ and can be thought of as "How much more do I need to add to 33 to get to 50?")

MP. 8 Look for and express regularity in repeated reasoning.

Second grade students notice repetitive actions in counting and computation (e.g., number patterns to skip count). When children have multiple opportunities to add and subtract, they look for shortcuts, such as using estimation strategies and then adjust the answer to compensate. Students continually check for the reasonableness of their solutions during and after completing a task by asking themselves, "Does this make sense?"

Standards for Mathematical Practice - Grade 3

The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as they engage with and master new and more advanced mathematical ideas across the grade levels.

MP. 1 Make sense of problems and persevere in solving them.

In third grade, mathematically proficient students know that doing mathematics involves solving problems and discussing how they solved them. Students explain to themselves the meaning of a problem and look for ways to solve it. Students may use concrete objects, pictures, or drawings to help them conceptualize and solve problems, such as "Jim purchased 5 packages of muffins. Each package contained 3 muffins. How many muffins did Jim purchase?" or "Describe another situation where there would be 5 groups of 3 or 5×3." Students may check their thinking by asking themselves, "Does this make sense?" Students listen to other students' strategies and are able to make connections between various methods for a given problem.

MP. 2 Reason abstractly and quantitatively.

Third graders should recognize that a number represents a specific quantity. They connect the quantity to written symbols and create a logical representation of the problem at hand, considering both the appropriate units involved and the meaning of quantities. For example: students apply their understanding of the meaning of the equal sign as "the same as" to interpret an equation with an unknown. When given $4 \times \square=40$, they might think:

- 4 groups of some number is the same as 40
- 4 times some number is the same as 40
- I know that 4 groups of 10 is 40 so the unknown number is 10
- The missing factor is 10 because 4 times 10 equals 40 .

Teachers might ask, "How do you know" or "What is the relationship between the quantities?" to reinforce students' reasoning and understanding.

MP. 3 Construct viable arguments and critique the reasoning of others.
Students may construct arguments using concrete referents, such as objects, pictures, and drawings. They refine their mathematical communication skills as they participate in mathematical discussions that the teacher facilities by asking questions such as "How did you get that?" and "Why is that true?" Students explain their thinking to others and respond to others' thinking. For example, after investigating patterns on the 100s chart, students might explain why the pattern makes sense.

MP. 4 Model with mathematics.

Students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, acting out, making a chart, list, or graph, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. Third graders should evaluate their results in the context of the situation and reflect on whether the results make sense.

MP. 4 Model with mathematics (continued).

For example, students use various contexts and a variety of models (e.g., circles, squares, rectangles, fraction bars, and number lines) to represent and develop understanding of fractions. Students use models to represent both equations and story problems and can explain their thinking. They evaluate their results in the context of the situation and reflect on whether the results make sense. Students should be encouraged to answer questions, such as "What math drawing or diagram could you make and label to represent the problem?" or "What are some ways to represent the quantities?"

MP. 5 Use appropriate tools strategically.

Third graders consider the available tools (including drawings and estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, they may use graph paper to find all the possible rectangles that have a given perimeter. They compile the possibilities into an organized list or a table, and determine whether they have all the possible rectangles. Students should be encouraged to answer questions such as, "Why was it helpful to use \qquad ?"

MP. 6 Attend to precision.

As third graders develop their mathematical communication skills, they try to use clear and precise language in their discussions with others and in their own reasoning. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, when figuring out the area of a rectangle they record their answers in square units.

MP. 7 Look for and make use of structure.

Students look closely to discover a pattern or structure. For instance, students use properties of operations (e.g., commutative and distributive properties) as strategies to multiply and divide. Teachers might ask, "What do you notice when \qquad ?" or "How do you know if something is a pattern?"

MP. 8 Look for and express regularity in repeated reasoning.

Students in third grade should notice repetitive actions in computation and look for more shortcut methods. For example, students may use the distributive property as a strategy for using products they know to solve products that they don't know. For example, if students are asked to find the product of 7×8, they might decompose 7 into 5 and 2 and then multiply 5×8 and 2×8 to arrive at $40+16$ or 56. In addition, third graders continually evaluate their work by asking themselves, "Does this make sense? Students should be encouraged to answer questions, such as, "What is happening in this situation?" or "What predictions or generalizations can this pattern support?"

Standards for Mathematical Practice - Grade 4

The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as they engage with and master new and more advanced mathematical ideas across the grade levels.

MP. 1 Make sense of problems and persevere in solving them.

In fourth grade, students know that doing mathematics involves solving problems and discussing how they solved them. Students explain to themselves the meaning of a problem and look for ways to solve it. Fourth graders may use concrete objects or pictures to help them conceptualize and solve problems. They may check their thinking by asking themselves, "Does this make sense?" They listen to the strategies of others and will try different approaches. They often will use another method to check their answers.

Students might use an equation strategy to solve the word problem. For example, students could solve the problem "Chris bought clothes for school. She bought 3 shirts for $\$ 12$ each and a skirt for $\$ 15$. How much money did Chris spend on her new school clothes?" with the equation $3 \times \$ 12+\$ 15=a$. Fourth graders may use concrete objects or pictures to help them conceptualize and solve problems. They may check their thinking by asking themselves, "Does this make sense?" They listen to the strategies of others and will try different approaches. They often will use another method to check their answers.

MP. 2 Reason abstractly and quantitatively.

Fourth graders should recognize that a number represents a specific quantity. They connect the quality to written symbols and create a logical representation of the problem at hand,
considering both the appropriate units involved and the meaning of quantities. They extend this understanding from whole numbers to their work with fractions and decimals. Students write simple expressions, record calculations with numbers, and represent or round numbers using place value concepts. Students might use base 10 blocks or drawings to demonstrate 154×6, as 154 added six times, and develop an understanding of the distributive property. For example: 154×6
$=(100+50+4) \times 6$
$=(100 \times 6)+(50 \times 6)+(4 \times 6)$
$=600+300+24=924$

MP. 3 Construct viable arguments and critique the reasoning of others.

In fourth grade, students may construct arguments using concrete referents, such as objects, pictures, and drawings. They explain their thinking and make connections between models and equations. They refine their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?", "Explain your thinking," and "Why is that true?" They not only explain their own thinking, but listen to others' explanations. Students explain and defend their answers and solution strategies as they answer question that require an explanation. For example, "Vincent cuts 2 meters of string into 4 centimeter pieces for a craft. How many pieces of string does Vincent have? Explain your reasoning." Students ask appropriate questions and they decide if explanations make sense.

[^1]
MP. 4 Model with mathematics.

Students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, making a chart, list, or graph, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed.

Fourth graders should evaluate their results in the context of the situation and reflect on whether the results make sense. For example, students may use money (i.e. dollars and coins) or base10 blocks to solve the following problem: Elsie buys a drink for $\$ 1.39$ and a granola bar for $\$ 0.89$. How much change will she receive if she pays with a $\$ 5$ bill?

MP. 5 Use appropriate tools strategically.

Fourth graders consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, they may use graph paper, a number line, or base 10 blocks to represent, compare, add, and subtract decimals to the hundredths. Students in fourth grade use protractors to measure angles. They use other measurement tools to understand the relative size of units within a given system and express measurements given in larger units in terms of smaller units.

MP. 6 Attend to precision.

As fourth graders develop their mathematical communication skills, they try to use clear and precise language in their discussions with others and in their own reasoning. For instance, they may use graph paper or a number line to represent, compare, add, and subtract decimals to the hundredths. Students in fourth grade use protractors to measure angles. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, they use appropriate labels when creating a line plot.

MP. 7 Look for and make use of structure.

In fourth grade, students look closely to discover a pattern or structure. For instance, students use properties of operations to explain calculations (partial products model). They relate representations of counting problems such as arrays and area models to the multiplication principal of counting. They generate number or shape patterns that follow a given rule using two-column tables.

MP. 8 Look for and express regularity in repeated reasoning.

Students in fourth grade should notice repetitive actions in computation to make generalizations. Students use models to explain calculations and understand how algorithms work. They also use models to examine patterns and generate their own algorithms. For example, students use visual fraction models to write equivalent fractions.

Standards for Mathematical Practice - Grade 5

The Standards for Mathematical Practice describe the skills that mathematics educators should seek to develop in their students. The descriptions of the mathematical practices in this document provide examples of how student performance will change and grow as they engage with and master new and more advanced mathematical ideas across the grade levels.

MP. 1 Make sense of problems and persevere in solving them.

Students solve problems by applying their understanding of operations with whole numbers, decimals, and fractions including mixed numbers. They solve problems related to volume and measurement conversions. Students seek the meaning of a problem and look for efficient ways to represent and solve it. For example, Sonia had $2 \frac{1}{3}$ candy bars. She promised her brother that she would give him $\frac{1}{2}$ of a candy bar. How much will she have left after she gives her brother the amount she promised? They may check their thinking by asking themselves, "What is the most efficient way to solve the problem?", "Does this make sense?", and "Can I solve the problem in a different way?".

MP. 2 Reason abstractly and quantitatively.

Fifth graders should recognize that a number represents a specific quantity. They connect quantities to written symbols and create a logical representation of the problem at hand, considering both the appropriate units involved and the meaning of quantities. They extend this understanding from whole numbers to their work with fractions and decimals. Students write simple expressions that record calculations with numbers and represent or round numbers using place value concepts. For example, students use abstract and quantitative thinking to recognize that $0.5 \times(300 \div 15)$ is $\frac{1}{2}$ of $(300 \div 15)$ without calculating the quotient.

MP. 3 Construct viable arguments and critique the reasoning of others.

In fifth grade, students may construct arguments using concrete referents, such as objects, pictures, and drawings. They explain calculations based upon models and properties of operations and rules that generate patterns. They demonstrate and explain the relationship between volume and multiplication. They refine their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?" and "Why is that true?" They explain their thinking to others and respond to others' thinking.

Students use various strategies to solve problems and they defend and justify their work with others. For example, two afterschool clubs are having pizza parties. The teacher will order 3 pizzas for every 5 students in the math club; and 5 pizzas for every 8 students in the student council. If a student is in both groups, decide which party he/she should to attend. How much pizza will each student get at each party? If a student wants to have the most pizza, which party should he/she attend?

MP. 4 Model with mathematics.

Students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, making a chart, list, or graph, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. Fifth graders should evaluate their results in the context of the situation and whether the results make sense. They also evaluate the utility of models to determine which models are most useful and efficient to solve problems.

MP. 5 Use appropriate tools strategically.

Fifth graders consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, they may use unit cubes to fill a rectangular prism and then use a ruler to measure the dimensions. They use graph paper to accurately create graphs and solve problems or make predictions from real-world data.

MP. 6 Attend to precision.

Students continue to refine their mathematical communication skills by using clear and precise language in their discussions with others and in their own reasoning. Students use appropriate terminology when referring to expressions, fractions, geometric figures, and coordinate grids. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, when figuring out the volume of a rectangular prism they record their answers in cubic units.

MP. 7 Look for and make use of structure.

In fifth grade, students look closely to discover a pattern or structure. For instance, students use properties of operations as strategies to add, subtract, multiply and divide with whole numbers, fractions, and decimals. They examine numerical patterns and relate them to a rule or a graphical representation.

MP. 8 Look for and express regularity in repeated reasoning.

Fifth graders use repeated reasoning to understand algorithms and make generalizations about patterns. Students connect place value and their prior work with operations to understand algorithms to fluently multiply multi-digit numbers and perform all operations with decimals to hundredths. Students explore operations with fractions with visual models and begin to formulate generalizations.

[^0]: (Adapted from Arizona Department of Education, California Mathematics Framework, and North Carolina Department of Public Instruction)

[^1]: (Adapted from Arizona Department of Education, California Mathematics Framework, and North Carolina Department of Public Instruction)

