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Introduction to Ohio’s Learning Standards 
for Mathematics 
PROCESS 
To better prepare students for college and careers, educators used 
public comments along with their professional expertise and 
experience to revise Ohio’s Learning Standards. In spring 2016, the 
public gave feedback on the standards through an online survey. 
Advisory committee members, representing various Ohio education 
associations, reviewed all survey feedback and identified needed 
changes to the standards. Then they sent their directives to working 
groups of educators who proposed the actual revisions to the 
standards. The Ohio Department of Education sent their revisions 
back out for public comment in July 2016. Once again, the Advisory 
Committee reviewed the public comments and directed the Working 
Group to make further revisions. Upon finishing their work, the 
department presented the revisions to the Senate and House 
education committees as well as the State Board of Education.  

Then in 2019, Ohio started the Strengthening Math Pathways 
Initiative. Two groups were formed: the Math Pathways Advisory 
Council and the Math Pathways Architects. The advisory council, 
made of representatives from education stakeholder groups, aligned 
systems and structures between secondary and postsecondary 
mathematics. The Math Pathways Architects, made up of high school 
and collegiate math faculty, aligned mathematics between the two 
systems. One of the outcomes was four proposed Algebra 2 
equivalent courses: Quantitative Reasoning, Statistics and Probability, 
Data Science Foundations, and Discrete Math/Computer Science. A 
workgroup was formed for each of these courses. This document is 
the result of the Data Science Foundations Workgroup with oversight 
from the Math Pathways Architects.  

UNDERSTANDING MATHEMATICS  
These standards define what students should understand and be able 
to do in their study of mathematics. Asking a student to understand 
something means asking a teacher to assess whether the student has 
understood it. But what does mathematical understanding look like? 
One hallmark of mathematical understanding is the ability to justify, in 
a way appropriate to the student’s mathematical maturity, why a 
particular mathematical statement is true, or where a mathematical 
rule comes from. There is a world of difference between a student 
who can summon a mnemonic device to expand a product such as  
(a + b)(x + y) and a student who can explain where the mnemonic 
device comes from. The student who can explain the rule understands 
mathematics at a much deeper level. Then the student may have a 
better chance to succeed at a less familiar task such as expanding  
(a + b + c)(x + y). Mathematical understanding and procedural skills 
are equally important, and both are assessable using mathematical 
tasks of sufficient richness.  

The content standards are grade specific. However, they do not 
define the intervention methods or materials necessary to support 
students well below or above grade-level expectations. It is also 
beyond the scope of the standards to define the full range of supports 
appropriate for English learners and students with special needs. At 
the same time, all students must have the opportunity to learn and 
meet the same high standards if they are to access the knowledge 
and skills necessary in their post-school lives. Educators should read 
the standards allowing for the widest possible range of students to 
participate fully from the outset. They should provide appropriate 
accommodation to ensure maximum participation of students with 
special education needs. For example, schools should allow students 
with disabilities in reading to use Braille, screen reader technology or 
other assistive devices. Those with disabilities in writing should have 
scribes, computers or speech-to-text technology. In a similar vein, 
educators should interpret the speaking and listening standards 
broadly to include sign language.   
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No set of grade-specific standards can fully reflect the great variety in 
abilities, needs, learning rates and achievement levels of students in 
any given classroom. However, the standards do provide clear 
signposts along the way to help all students achieve the goal of 
college and career readiness. 

The standards begin on page 9 with the eight Standards for 
Mathematical Practice.  
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Introduction to Ohio’s Learning Standards 
for Computer Science (2022) 
Substitute House Bill Number 170 took effect in March 2018, requiring 
the State Board of Education of Ohio to adopt standards and a model 
curriculum for grade K-12 instruction in computer science. A team of 
Ohio educators came together to develop and write the computer 
science standards and model curriculum, and the State Board 
adopted these in December 2018. 

Ohio House Bill Number 110, passed in July 2021, included several 
new provisions for K-12 computer science education. The law 
requires the Ohio Department of Education to update the Ohio 
Learning Standards and Model Curriculum for Computer Science 
within one year of the effective date of HB 110 (Ohio Revised Code 
3301.079(A)(4). Following the established process, a team of Ohio 
educators came together to develop and write the revisions for the 
computer science standards and the State Board adopted these  
in 2022. 

Ohio’s Standards in Computer Science are fully aligned to Ohio’s five-
year strategic plan for education, Each Child, Our Future. The 
strategic plan acknowledges a major education policy shift around 
technology. A student’s ability to use technology strategically is now 
identified as foundational and just as important as mathematics and 
English language arts, from which all other learning is built. 

GUIDING ASSUMPTIONS 
The team of Ohio educators that developed the standards and model 
curriculum had a clear goal – to encourage districts and educators to 
give all Ohio students opportunities to learn computer science. 
Beginning in the earliest grades and continuing through grade 12, 
Ohio’s students will develop a foundation of computer science 
knowledge and gain experiences in computational thinking and 
problem-solving to become creators and innovators of computing 
technology. Ohio’s Computer Science Standards and Model 
Curriculum will give students experiences that help them discover and 
take part in a world continually influenced by technology and to 
understand the role of computing in that world.  

OVERVIEW OF THE COMPUTER SCIENCE STANDARDS 
CONTENT 
The standards will support a progression of learning in each core 
concept or strand to provide computer science experiences for all 
Ohio students. The K-8 standards integrate computer science into 
instruction across subject areas including mathematics, science, 
history, English language arts, fine arts, world language and career 
and technology courses. The high school computer science standards 
provide both foundational and advanced opportunities districts can 
use to design as separate courses or, when appropriate, integrate into 
other disciplines. 

Ohio’s Computer Science Standards and Model Curriculum are 
organized into the following strands: 

Computing Systems—Addresses how devices, including hardware 
and software, interact to accomplish tasks and how students can 
troubleshoot computing systems when they do not work as intended. 

Networks and the Internet—Addresses how devices and networks 
connect to share information and resources and how students can 
apply cybersecurity concepts to protect information. 

Data and Analysis—Addresses how data can be collected and 
stored; analyzed and communicated; and used to make more 
accurate predictions. 

Algorithmic Thinking and Programming—Addresses program 
development, including the use of algorithms, variables, control 
structures and modules. 

Artificial Intelligence—Addresses machine learning, natural 
interaction, perception, representation and reasoning and 
 societal impacts. 

Impacts of Computing—Addresses computing’s influence on our 
world by examining the relationship between computing and culture, 
computing’s impact on social interaction, and legal and ethical 
implications of computing.  
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Computational Thinking is a problem-solving process that students 
use to engage with concepts in the computer science standards. This 
thinking involves formulating problems in a way that can be carried 
out by a computer. Using computational thinking to solve a problem 
includes breaking down the problem into manageable parts, 
recognizing patterns, excluding irrelevant details to abstract or identify 
general principles that generate these patterns and developing step-
by-step sequences or algorithms to solve the problem and similar 
problems. Computational thinking can be applied with or without 
computers, for example, through “unplugged” activities. While 
computational thinking is a focus in computer science, it also is used 
in content areas beyond computer science. 

It is important that computer science not be confused with other 
aspects and uses of computer technology in schools, including: 

• Computer literacy “refers to the general use of computers 
and programs, such as productivity software.” Examples of 
computer literacy include performing an internet search and 
creating a digital presentation. 

• Educational (computer) technology “applies computer 
literacy to school subjects. For example, students in an 
English class can use a web-based application to 
collaboratively create, edit and store an essay online.” 

• Digital citizenship “refers to the appropriate and responsible 
use of technology, such as choosing an appropriate password 
and keeping it secure.” 

• Information technology “often overlaps with computer 
science but is mainly focused on industrial applications of 
computer science, such as installing [and operating] software 
rather than creating it. Information technology professionals 
often have a background in computer science.” 
(K-12 Computer Science Framework, 2016, pp.13-14) 

OVERVIEW OF THE COMPUTER SCIENCE STANDARDS 
FRAMEWORK 
Ohio’s Computer Science Standards are organized by strands, topics 
and content statements. 

 
Grades 9-12—Content statements are organized by grade band into 
two levels–Foundational and Advanced. See an example of a content 
statement for high school and its corresponding content statement 
code below. This content statement addresses the topic of Networking 
within the Networks and the Internet strand, at the Foundational Level. 
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A Note on Rigor and Algebra 2 Equivalency 
Ohio law states that students must have four units of mathematics 
and that one of those units should be Algebra 2/Math 3 or its 
equivalent. Ohio has decided to expand guidance around what it 
means to be equivalent to Algebra 2.  

It has been decided that equivalent refers to the level of rigor and 
reasoning, not content. There are many branches of mathematics that 
are equally rigorous but have different content focuses. All equivalent 
courses should have the same level of rigor and reasoning that are 
needed to be successful in an entry-level, credit-bearing 
postsecondary mathematics course.  

Ohio has defined rigor as the following:  
“Students use mathematical language to communicate 
effectively and to describe their work with clarity and precision. 
Students demonstrate how, when, and why their procedure 
works and why it is appropriate. Students can answer the 
question, ‘How do we know?’” 

This can be illustrated in the table to the right.  

Currently, four courses have been determined to be equivalent to 
Algebra 2: Advanced Quantitative Reasoning, Statistics and 
Probability, Data Science Foundations and Discrete Math/Computer 
Science. The same level of rigor applying to Algebra 2 equivalent 
courses should also apply to an Algebra 2/Mathematics 3 course. This 
document explains what should be included in an  
Algebra 2/Mathematics 3 course to prepare students for a  
Calculus-based STEM career.  

 
Rigorous courses are…  vs Rigorous courses are not… 

Defined by complexity, which 
is a measure of the thinking, 
action, or knowledge that is 
needed to complete the task 

Characterized by difficulty, 
which is a measure of effort 
required to complete a task 

Measured in depth of 
understanding 

Measured by the amount of 
work 

Opportunities for precision in 
reasoning, language, 
definitions, and notation that 
are sufficient to appropriate 
age/course 

Based on procedure alone 

Determined by students’ 
process 

Measured by assigning difficult 
problems 

Opportunities for students to 
make decisions in problem-
solving 

Defined only by the resources 
used   

Opportunities to make 
connections Taught in isolation 

Supportive of the transfer of 
knowledge to new situations Repetitive 

Driven by students developing 
efficient explanations of 
solutions and why they work, 
providing opportunities for 
thinking and reasoning about 
contextual problems and 
situations 

Focused on getting an answer 

Defined by what the student 
does with what you give them 

Defined by what you give the 
student 
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What is Discrete Math? 
Discrete Mathematics is an area of mathematics that most closely 
connects with the field of computer science. It is the study of 
mathematical structures that are countable or otherwise distinct and 
separable (as opposed to continuous quantities like in algebra or 
calculus). 

THE NEED FOR COMPUTER SCIENCE 
The Computer Science Field is one of the fastest-growing and 
highest-paying career paths in Ohio. However, there is a limited 
supply of Ohio students interested in Computer Science. This is 
largely based on how exposed students are to computational thinking 
and computer science concepts. Additionally, educating students in 
computer science is beneficial for all students. With the digital age 
rising, there is a need to develop logical thinking and problem-solving 
which are all a part of learning computer science. To prepare students 
for this field, they also need exposure to advanced mathematics. 
Combining mathematics and computer science gives more students 
access to computer science concepts.  

The purpose of a Discrete Math/Computer Science math course is to 
give students exposure to computer science in a way that connects 
with advanced mathematics instruction. The course is intended to 
spark student interest in careers involving computer science and 
technology. Since the calculus pathway is not meeting the needs of all 
students, a Discrete Math/Computer Science course provides another 
alternative that is rigorous and prepares students for a post-high 
school learning experience including an apprenticeship and/or a  
two-year or four-year college program or developing skills needed for 
a position in the field of computer programming. 

EARNING SIMULTANEOUS CREDIT 
A licensed high school mathematics or computer science teacher may 
teach this course. Students who take this course may earn credit in 
mathematics and computer science simultaneously. Follow the 
guidance in Ohio’s Integrated Coursework for Simultaneous Credit. 

Ohio’s Strategic Plan, Each Child, Our Future, envisions that each 
child is challenged to discover and learn, prepared to pursue a 
fulfilling post-high school path and empowered to become a resilient, 
lifelong learner who contributes to society. Part of this empowerment 
can be found in the concept of integrated coursework. Integrating 
coursework allows students to have a unique meaningful learning 
experience. Strategy 10 of Each Child, Our Future emphasizes giving 
students multiple ways to demonstrate the knowledge, skills and 
dispositions for high school graduation and beyond. This includes 
redesigning middle and high schools to contribute to or create a more 
successful learning environment. 

Ohio law allows districts, community schools and chartered nonpublic 
schools to integrate content standards from multiple subject areas into 
a single course for which students can earn simultaneous credit. 
Districts and schools can award simultaneous credit for multiple 
courses at once if the content from the courses is covered and 
mastered by a student through an integrated course. Integrating 
coursework for simultaneous credit allows students to have unique 
meaningful learning experiences that best meet their needs and 
interests.  

The Integrating Coursework and Awarding Simultaneous Credit 
Guidance for Schools document outlines processes and 
considerations for schools when developing integrated courses. It also 
provides guidance for awarding appropriate credit for integrated 
coursework to satisfy Ohio’s graduation requirements. 

A yearlong course that focuses on integrating computer science 
standards with mathematics standards and concepts from discrete 
mathematics is eligible under integrated coursework for simultaneous 
credit. See the Integrating Coursework and Awarding Simultaneous 
Credit Guidance for Schools document for more information on the 
necessary criteria for a course to be eligible for simultaneous credit.  

  

https://education.ohio.gov/getattachment/Topics/Career-Tech/Integrated-Coursework-And-Awarding-Simultaneous-Cr/Integrated-Coursework-and-Awarding-Simultaneous-Credit-Guidance-for-Schools.pdf.aspx?lang=en-US
http://education.ohio.gov/About/EachChildOurFuture
https://codes.ohio.gov/ohio-revised-code/section-3313.603
https://education.ohio.gov/getattachment/Topics/Career-Tech/Integrated-Coursework-And-Awarding-Simultaneous-Cr/Integrated-Coursework-and-Awarding-Simultaneous-Credit-Guidance-for-Schools.pdf.aspx?lang=en-US
https://education.ohio.gov/getattachment/Topics/Career-Tech/Integrated-Coursework-And-Awarding-Simultaneous-Cr/Integrated-Coursework-and-Awarding-Simultaneous-Credit-Guidance-for-Schools.pdf.aspx?lang=en-US
https://education.ohio.gov/getattachment/Topics/Career-Tech/Integrated-Coursework-And-Awarding-Simultaneous-Cr/Integrated-Coursework-and-Awarding-Simultaneous-Credit-Guidance-for-Schools.pdf.aspx?lang=en-US
https://education.ohio.gov/getattachment/Topics/Career-Tech/Integrated-Coursework-And-Awarding-Simultaneous-Cr/Integrated-Coursework-and-Awarding-Simultaneous-Credit-Guidance-for-Schools.pdf.aspx?lang=en-US
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Standards for Mathematical Practice 
The Standards for Mathematical Practice describe varieties of 
expertise that mathematics educators at all levels should seek to 
develop in their students. These practices rest on important 
“processes and proficiencies” with longstanding importance in 
mathematics education. The first of these are the NCTM process 
standards of problem-solving, reasoning and proof, communication, 
representation, and connections. The second is the strands of 
mathematical proficiency specified in the National Research Council’s 
report Adding It Up: adaptive reasoning, strategic competence, 
conceptual understanding (comprehension of mathematical concepts, 
operations and relations), procedural fluencyG (skill in carrying out 
procedures flexibly, accurately, efficiently, and appropriately), and 
productive disposition (habitual inclination to see mathematics as 
sensible, useful, and worthwhile, coupled with a belief in diligence and 
one’s own efficacy). 

1. Make sense of problems and persevere in solving them. 
Mathematically proficient students start by explaining to themselves 
the meaning of a problem and looking for entry points to its solution. 
They analyze givens, constraints, relationships, and goals. They make 
conjectures about the form and meaning of the solution and plan a 
solution pathway rather than simply jumping into a solution attempt. 
They consider analogous problems and try special cases and simpler 
forms of the original problem to gain insight into its solution. They 
monitor and evaluate their progress and change course if necessary. 
Older students might, depending on the context of the problem, 
transform algebraic expressions or change the viewing window on 
their graphing calculator to get the information they need. 
Mathematically proficient students can explain correspondence 
between equations, verbal descriptions, tables and graphs or draw 
diagrams of important features and relationships, graph data and 
search for regularity or trends. Younger students might rely on using 
concrete objects or pictures to help conceptualize and solve a 
problem. Mathematically proficient students check their answers to 
problems using a different method, and they continually ask 
themselves, “Does this make sense?” They can understand the 

approaches of others to solve more complicated problems and identify 
correspondences between different approaches. 

2. Reason abstractly and quantitatively. 
Mathematically proficient students make sense of quantities and their 
relationships in problem situations. They bring two complementary 
abilities to bear on problems involving quantitative relationships: the 
ability to decontextualize—to abstract a given situation and represent 
it symbolically and manipulate the representing symbols as if they 
have a life of their own, without necessarily attending to their 
referents—and the ability to contextualize, to pause as needed during 
the manipulation process to probe into the referents for the symbols 
involved. Quantitative reasoning entails habits of creating a coherent 
representation of the problem at hand; considering the units involved; 
attending to the meaning of quantities, not just how to compute them 
and knowing and flexibly using different properties of operations and 
objects. 

3. Construct viable arguments and critique the reasoning of 
others. 
Mathematically proficient students understand and use stated 
assumptions, definitions, and previously established results in 
constructing arguments. They make conjectures and build a logical 
progression of statements to explore the truth of their conjectures. 
They can analyze situations by breaking them into cases and can 
recognize and use counterexamples. They justify their conclusions, 
communicate them to others, and respond to the arguments of others. 
They reason inductively about data, making plausible arguments that 
take into account the context from which the data arose. 
Mathematically proficient students are also able to compare the 
effectiveness of two plausible arguments, distinguish correct logic or 
reasoning from that which is flawed, and—if there is a flaw in an 
argument—explain what it is. Elementary students can construct 
arguments using concrete referents such as objects, drawings, 
diagrams, and actions. Such arguments can make sense and be 
correct, even though they are not generalized or made formal until 
later grades. Later, students learn to determine domains to which an 
argument applies. Students at all grades can listen to or read the 
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arguments of others, decide whether they make sense and ask useful 
questions to clarify or improve the arguments. 

4. Model with mathematics. 
Mathematically proficient students can apply the mathematics they 
know to solve problems arising in everyday life, society, and the 
workplace. In early grades, this might be as simple as writing an 
addition equation to describe a situation. In middle grades, a student 
might apply proportional reasoning to plan a school event or analyze a 
problem in the community. 

By high school, a student might use geometry to solve a design 
problem or use a function to describe how one quantity of interest 
depends on another. Mathematically proficient students who can 
apply what they know are comfortable making assumptions and 
approximations to simplify a complicated situation, realizing that these 
may need revision later. 

They can identify important quantities in a practical situation and map 
their relationships using such tools as diagrams, two-way tables, 
graphs, flowcharts, and formulas. They can analyze those 
relationships mathematically to draw conclusions. They routinely 
interpret their mathematical results in the context of the situation and 
reflect on whether the results make sense, possibly improving the 
model if it has not served its purpose. 

5. Use appropriate tools strategically. 
Mathematically proficient students consider the available tools when 
solving a mathematical problem. These tools might include pencils 
and paper, concrete models, a ruler, a protractor, a calculator, a 
spreadsheet, a computer algebra system, a statistical package, or 
dynamic geometry software. Proficient students are sufficiently 
familiar with tools appropriate for their grade or course to make sound 
decisions about when each of these tools might be helpful, 
recognizing both the insight to be gained and their limitations. For 
example, mathematically proficient high school students analyze 
graphs of functions and solutions generated using a graphing 
calculator. They detect possible errors by strategically using 
estimation and other mathematical knowledge. When making 
mathematical models, they know that technology can enable them to 

visualize the results of varying assumptions, explore consequences, 
and compare predictions with data. Mathematically proficient students 
at various grade levels can identify relevant external mathematical 
resources, such as digital content located on a website, and use them 
to pose or solve problems. They can use technological tools to 
explore and deepen their understanding of concepts. 

6. Attend to precision. 
Mathematically proficient students try to communicate precisely with 
others. They try to use clear definitions in discussions with others and 
in their own reasoning. They state the meaning of the symbols they 
choose, including using the equal sign consistently and appropriately. 
They are careful about specifying units of measure and labeling axes 
to clarify the correspondence with quantities in a problem. They 
calculate accurately and efficiently and express numerical answers 
with a degree of precision appropriate for the problem context. In 
elementary grades, students give carefully formulated explanations to 
each other. By the time they reach high school, they have learned to 
examine claims and make explicit use of definitions. 

7. Look for and make use of structure. 
Mathematically proficient students look closely to discern a pattern or 
structure. Young students, for example, might notice that three and 
seven more is the same amount as seven and three more, or they 
may sort a collection of shapes according to how many sides the 
shapes have. Later, students will see 7 × 8 equals the well-
remembered 7 × 5 + 7 × 3, in preparation for learning about the 
distributive property. In the expression x2 + 9x + 14, older students 
can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the 
significance of an existing line in a geometric figure and can use the 
strategy of drawing an auxiliary line for solving problems. They also 
can step back for an overview and shift perspective. They can see 
complex things, such as some algebraic expressions, as single 
objects or as being composed of several objects. For example, they 
can see 5 – 3(x – y)2 as 5 minus a positive number times a square 
and use that to realize that its value cannot be more than 5 for any 
real numbers x and y.  
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8. Look for and express regularity in repeated reasoning. 
Mathematically proficient students notice if calculations are repeated 
and look both for general methods and shortcuts. Upper elementary 
students might notice when dividing 25 by 11 that they are repeating 
the same calculations over and over again, and conclude they have a 
repeating decimal. By paying attention to the calculation of slope as 
they repeatedly check whether points are on the line through (1, 2) 
with slope 3, students might abstract the equation  
(y − 2)/(x − 1) = 3. Noticing the regularity in the way terms cancel when 
expanding (x − 1)(x + 1), (x − 1)(x2 + x + 1), and  
(x − 1)(x3 + x2 + x + 1) might lead them to the general formula for the 
sum of a geometric series. As they work to solve a problem, 
mathematically proficient students maintain oversight of the process, 
while attending to the details. They continually evaluate the 
reasonableness of their intermediate results. 

CONNECTING THE STANDARDS FOR MATHEMATICAL 
PRACTICE TO THE STANDARDS FOR MATHEMATICAL 
CONTENT 
The Standards for Mathematical Practice describe ways in which 
developing student practitioners of the discipline of mathematics 
increasingly ought to engage with the subject matter as they grow in 
mathematical maturity and expertise throughout the elementary, 
middle and high school years. Designers of curricula, assessments, 
and professional development should all attend to the need to connect 
mathematical practices to mathematical content in mathematics 
instruction.  

The Standards for Mathematical Content are a balanced combination 
of procedure and understanding. Expectations that begin with the 
word “understand” are often especially good opportunities to connect 
the practices to the content. Students who lack understanding of a 
topic may rely on procedures too heavily. Without a flexible base from 
which to work, they may be less likely to consider analogous 
problems, represent problems coherently, justify conclusions, apply 
mathematics to practical situations, use technology mindfully to work 
with the mathematics, explain the mathematics accurately to other 
students, step back for an overview or deviate from a known 
procedure to find a shortcut. In short, a lack of understanding 

effectively prevents a student from engaging in mathematical 
practices. In this respect, those content standards which set an 
expectation of understanding are potential “points of intersection” 
between the Standards for Mathematical Content and the Standards 
for Mathematical Practice. These points of intersection are intended to 
be weighted toward central and generative concepts in the school 
mathematics curriculum that most merit the time, resources, 
innovative energies and focus necessary to qualitatively improve the 
curriculum, instruction, assessment, professional development and 
student achievement in mathematics. 
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Computer Science Practices1 
Practice 1. Fostering an Inclusive Computing Culture 
Building an inclusive and diverse computing culture requires 
strategies for incorporating perspectives from people of different 
genders, ethnicities and abilities. Incorporating these perspectives 
involves understanding the personal, ethical, social, economic and 
cultural contexts in which people operate. Considering the needs of 
diverse users during the design process is essential to producing 
inclusive computational products. 

By the end of Grade 12, students should be able to do the following: 
• Include the unique perspectives of others and reflect on one’s 

own perspectives when designing and developing 
computational products. 

• Address the needs of diverse end users during the design 
process to produce artifacts with broad accessibility  
and usability. 

• Employ self- and peer-advocacy to address bias in 
interactions, product design, and development methods. 

Practice 2: Collaborating Around Computing 
Collaborative computing is the process of performing a computational 
task by working in pairs and teams. Because it involves asking for the 
contributions and feedback of others, effective collaboration can lead 
to better outcomes than working independently. Collaboration requires 
individuals to navigate and incorporate diverse perspectives, 
conflicting ideas, disparate skills and distinct personalities. Students 
should use collaborative tools to effectively work together and to 
create complex artifacts. By the end of Grade 12, students should be 
able to do the following: 

• Cultivate working relationships with individuals possessing 
diverse perspectives, skills and personalities. 

• Create team norms, expectations and equitable workloads to 
increase efficiency and effectiveness. 

• Solicit and incorporate feedback from, and provide 
constructive feedback to, team members and other 
stakeholders. 

• Evaluate and select technological tools that can be used to 
collaborate on a project. 

Practice 3: Recognizing and Defining Computational Problems 
The ability to recognize appropriate and worthwhile opportunities to 
apply computation is a skill that develops over time and is central to 
computing. Solving a problem with a computational approach requires 
defining the problem, breaking it down into parts and evaluating each 
part to determine whether a computational solution is appropriate.  

By the end of Grade 12, students should be able to do the following: 
• Identify complex, interdisciplinary, real-world problems that 

can be solved computationally. 
• Decompose complex real-world problems into manageable 

subproblems that could integrate existing solutions or 
procedures. Compose complex real-world problems into 
manageable subproblems that could integrate existing 
solutions or procedures. 

• Evaluate whether it is appropriate and feasible to solve a 
problem computationally. 

 
1 The “Computer Science Practices” section has been modified from chapter 
two of the K-12 Computer Science Framework Statements by Grade Band, 
(K–12 Computer Science Framework. (2016). Retrieved from 
https://k12cs.org/framework-statements-by-grade-band/This work is licensed 
under Creative Commons (CC BY-NC-SA 4.0). 
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Practice 4: Developing and Using Abstractions 
Abstractions are formed by identifying patterns and extracting 
common features from specific examples to create generalizations. 
Using generalized solutions and parts of solutions designed for broad 
reuse simplifies the development process by managing complexity. 

By the end of Grade 12, students should be able to do the following: 
• Extract common features from a set of interrelated processes 

or complex phenomena. 
• Evaluate existing technological functionalities and incorporate 

them into new designs. 
• Create modules and develop points of interaction that can 

apply to multiple situations and reduce complexity. 
• Model phenomena and processes and simulate systems to 

understand and evaluate potential outcomes. 

Practice 5: Creating Computational Artifacts 
The process of developing computational artifacts embraces both 
creative expression and the exploration of ideas to create prototypes 
and solve computational problems. Students create artifacts that are 
personally relevant or beneficial to their community and beyond. 
Computational artifacts can be created by combining and modifying 
existing artifacts or by developing new artifacts. Examples of 
computational artifacts include programs, simulations, visualizations, 
digital animations, robotic systems and apps. 

By the end of Grade 12, students should be able to do the following: 
• Plan the development of a computational artifact using an 

iterative process that includes reflection on and modification of 
the plan, taking into account key features, time and resource 
constraints and user expectations. 

• Create a computational artifact for practical intent, personal 
expression, or to address a societal issue. 

• Modify an existing artifact to improve or customize it. 

Practice 6: Testing and Refining Computational Artifacts 
Testing and refinement are the deliberate and iterative process of 
improving a computational artifact. This process includes debugging 
(identifying and fixing errors) and comparing actual outcomes to 
intended outcomes. Students also respond to the changing needs and 
expectations of end users and improve the performance, reliability, 
usability, and accessibility of artifacts.  

By the end of Grade 12, students should be able to do the following: 
• Systematically test computational artifacts by considering all 

scenarios and using test cases. 
• Identify and fix errors using a systematic process. 
• Evaluate and refine a computational artifact multiple times to 

enhance its performance, reliability, usability and accessibility. 

Practice 7: Communicating About Computing 
Communication involves personal expression and exchanging ideas 
with others. In computer science, students communicate with diverse 
audiences about the use and effects of computation and the 
appropriateness of computational choices. Students write clear 
comments, document their work, and communicate their ideas 
through multiple forms of media. Clear communication includes using 
precise language and carefully considering possible audiences. 

By the end of Grade 12, students should be able to do the following: 
• Select, organize and interpret large data sets from multiple 

sources to support a claim. 
• Describe, justify and document computational processes and 

solutions using appropriate terminology consistent with the 
intended audience and purpose. 

• Articulate ideas responsibly by observing intellectual property 
rights and giving appropriate attribution. 
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EQUITY AND COMPUTER SCIENCE1 
COMPUTER SCIENCE FOR ALL 
To help realize the vision of computer science for all students, equity 
must be at the forefront of the state’s efforts to implement computer 
science standards. Equity is more than whether classes are available. 
It includes how those classes are taught, how students are recruited 
and how the classroom culture supports diverse learners and 
promotes retention. When equity exists, schools expect academic 
success for every student and make that success accessible to every 
student. The result of such equity is a classroom of diverse students 
based on factors such as race, gender, disability, socioeconomic 
status and English language proficiency. All these students have high 
expectations and feel empowered to learn.  

Computer science faces intense challenges related to access, 
opportunity and culture. 

• The 2021 State of Computer Science report showed that only 
51 percent of public high schools offer foundational computer 
science courses (Code.org et al, 2021). This data showed that 
students with the least access are Black, Latino and Native 
American, from lower-income backgrounds and urban and 
rural areas. 

Even when computer science courses are available, there are wide 
gaps in participation and the level of instruction. 

• For the 2020 Advanced Placement (AP) Computer Science 
exam, only 31 percent of students were female, 6 percent 
were Black or African American, 16 percent were Hispanic or 
Latino and 0.5 percent were Native American (College Board, 
2020). 

• The potential impact of these gaps in participation is illustrated 
in the statistic that females who take high school AP 
Computer  

[1] The “Equity and Computer Science” section has been modified from chapter two 
of the K-12 Computer Science Framework, “Equity in Computer Science Education.” 
(K–12 Computer Science Framework. (2016).  

Science are 10 times more likely to major in computer science 
in college than students who do not take this course (Morgan 
& Klaric, 2007). 

• Especially in schools with large numbers of African American 
and Latino students, computer classes too commonly offer 
only basic, rudimentary user skills rather than engaging 
students in the problem-solving and computational thinking 
practices that form the foundation of computer science 
(Margolis et al., 2012). 

The lack of representation in computer science after K–12 reflects the 
lack of access and participation in grades K–12. In 2021, only 26.2 
percent of workers employed in computer and mathematical 
occupations were female. Only 8.5 percent were Black or African 
American, and only 8.3 percent were Hispanic or Latino (Bureau of 
Labor Statistics, 2021).  

EFFORTS TO INCREASE EQUITY 
Even when schools have made computer science courses available to 
students, inequity can be perpetuated at the classroom level. 
Educators can work to ensure equity through changes in curriculum, 
instruction and classroom culture. 

• Educators can reach students with disabilities using learning 
accommodations, curricular modifications and established 
techniques for differentiated instruction. For example, the 
Quorum programming language accommodates students with 
visual impairments by enabling the programming language to 
be read by computer screen readers (Quorum, 2019). Recent 
research shows ways to use Universal Design for Learning 
(UDL) to develop and refine introductory computer science 
experiences for a wider range of learners (Hansen et al., 
2016). Educators also can apply instructional strategies used 
in other content areas to support struggling learners and 
students with disabilities. For example, if verbal prompting  
helps in math instruction, it will likely help in computer science 
instruction (Snodgrass, Israel, & Reese, 2016). 
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• A variety of approaches make programming more accessible 
to young learners and beginners. Visual, block-based 
programming languages allow students to program without the 
obstacle of syntax errors (errors in typing commands) found in 
traditional text-based languages. Programming environments 
on tablets have made programming even more accessible to 
younger children by reducing the number of available 
commands and the amount of reading required to navigate the 
options (Strawhacker & Bers, 2014). 

• To address a lack of computer and internet access, educators 
can help students learn many computer science topics, such 
as algorithmic thinking, searching, sorting and logic through 
“unplugged” activities. Ohio’s initiative, InnovateOhio, strives to 
transform Ohio’s communities and bring opportunity for growth 
in the rural and urban areas through a statewide broadband 
strategy to improve access to high-speed internet 
(InnovateOhio, 2022). 

• To reach females and underrepresented minorities, teachers 
can use strategies to work against issues such as the threat of 
stereotyping or bias. For example, stereotype threats can be 
mitigated by altering the wording of test questions to be 
gender-neutral and using examples that are equally relevant to 
both males and females (Kumar, 2012). It also is important for 
students to have diverse role models in the field so they can 
imagine themselves as a computer scientist. Role models also 
help dispel stereotypes of how computer scientists look and 
act (Goode, 2008). 

Retrieved from http://www.k12cs.org.) This work is licensed under Creative 
Commons (CC BY-NC-SA 4.0). 

Below, are other practices that teachers can adopt and adapt to 
change classroom culture and broaden participation in computer 
science: 

• Connect computer science to concepts that motivate children, 
like fairness and social justice (Denner et al., 2015). 

• Practice culturally relevant pedagogy to tie computer science 
to students’ experiences, culture and interests (Margolis et al., 
2014). Designing projects and instruction to be socially 
relevant and meaningful for diverse students helps them “build 
personal relationships with CS concepts and applications -- an 
important process for discovering the relevance of CS for their 
own lives.” (Margolis et. al, 2012, p. 76) 

• Reflect on beliefs and actions to address stereotypes among 
students and teachers (Margolis et al., 2014). 

EQUITY AND THE COMPUTER SCIENCE STANDARDS 
The computer science standards reflect the writing team’s 
considerations on equity. The standards describe concepts and skills 
all students can benefit from, regardless of whether they go on to 
postsecondary computer-science education or a career in computer 
science. 

Equity is woven into the computer science concepts and skills across 
grade levels. This is especially apparent in the core concept or strand 
involving Impacts of Computing. Here, students examine the social 
implications of the digital world, including their impact on equity and 
access to computing. Specific content statements address equity 
directly. For example, in grade 3, students identify diverse user needs 
and “how computing devices have built-in features to increase 
accessibility to all users.” In grade 7, students “evaluate various 
technologies to identify issues of bias and accessibility.” Students in 
grade 8 build on prior learning to work against existing inequities, they 
propose guidelines “to positively impact bias and accessibility in the 
design of future technologies.” 

  

http://www.k12cs.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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As students design computational products, they engage in computer 
science practices that also directly involve consideration of equity, 
inclusion and diversity. Students foster inclusion as they develop 
products that “include the unique perspectives of others” and “address 
the needs of diverse end users.” Students encourage diversity 
through working in teams “with individuals possessing diverse 
perspectives.” Involving students in such practices stresses the need 
to practice equity when doing computer science. Through such 
practices, students can see the benefit of, for example, considering 
the products they develop from the perspectives of a diverse group of 
end-users, such as those with visual impairments and English 
language learners. 
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Mathematical Standards for High School 
PROCESS 
The high school standards specify the mathematics that all students 
should study to be college and career ready. Additional mathematics 
that students should learn to take advanced courses such as calculus, 
advanced statistics or discrete mathematics is indicated by (+), as in 
this example:  

(+) Represent complex numbers on the complex plane in 
rectangular and polar form (including real and imaginary 
numbers).  

All standards without a (+) symbol should be in the common 
mathematics curriculum for all college and career-ready students. 
Standards with a (+) symbol may also appear in courses intended for 
all students. However, standards with a (+) symbol will not appear on 
Ohio’s State Tests. 

• The high school standards are listed in conceptual categories:  
• Modeling  
• Number and Quantity 
• Algebra  
• Functions  
• Geometry  
• Statistics and Probability 

Conceptual categories portray a coherent view of high school 
mathematics; a student’s work with functions, for example, crosses 
several traditional course boundaries, potentially up through and 
including Calculus.  

Modeling is best interpreted not as a collection of isolated topics but in 
relation to other standards. Making mathematical models is a 
Standard for Mathematical Practice and specific modeling standards 
appear throughout the high school standards indicated by a star 
symbol (★). 

Proofs in high school mathematics should not be limited to geometry. 
Mathematically proficient high school students employ multiple proof 
methods, including algebraic derivations, proofs using coordinates, 
and proofs based on geometric transformations, including 
symmetries. These proofs are supported by the use of diagrams and 
dynamic software and are written in multiple formats including not just 
two-column proofs but also proofs in paragraph form, including 
mathematical symbols. In statistics, rather than using mathematical 
proofs, arguments are made based on empirical evidence within a 
properly designed statistical investigation. 
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HOW TO READ THE HIGH SCHOOL CONTENT STANDARDS 
• Conceptual Categories are areas of mathematics that cross 

through various course boundaries.  
• Standards define what students should understand and be 

able to do.  
• Clusters are groups of related standards. Note that standards 

from different clusters may sometimes be closely related 
because mathematics is a connected subject.  

• Domains are larger groups of related standards. Standards 
from different domains may sometimes be closely related. 

• G shows there is a definition in the glossary for this term.  
• (★) indicates that modeling should be incorporated into the 

standard. (See the Conceptual Category of Modeling  
pages 12-13) 

• (+) indicates that it is a standard for students who are planning 
on taking advanced courses. Standards with a (+) sign will not 
appear on Ohio’s State Tests. 

Some standards have course designations such as (A1, M1) or  
(A2, M3) listed after an a., b. or c. These designations help teachers 
know where to focus their instruction within the standard. In the 
example below the beginning section of the standard is the stem. The 
stem shows what the teacher should be doing for all courses. (Notice 
in the example below that modeling (★) should also be incorporated.) 
Looking at the course designations, an Algebra 1 teacher should be 
focusing his or her instruction on a. which focuses on linear functions; 
b. which focuses on quadratic functions; and e. which focuses on 
simple exponential functions. An Algebra 1 teacher can ignore c., d. 
and f, as the focuses of these types of functions will come in later 
courses. However, a teacher may choose to touch on these types of 
functions to extend a topic if he or she wishes.  
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Notice that in the standard below, the stem has a course designation. 
This shows that the full extent of the stem is intended for an Algebra 2 
or Math 3 course. However, a. shows that Algebra 1 and Math 2 
students are responsible for a modified version of the stem that 
focuses on transformations of quadratics functions and excludes the 
f(kx) transformation. However, again a teacher may choose to touch 
on different types of functions besides quadratics to extend a topic if 
he or she wishes. 
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Critical Areas of Focus 
CRITICAL AREA OF FOCUS #1 
Communication and Analysis 
Within this critical area students develop conclusions based on 
quantitative information and critical thinking. They recognize, make, 
and evaluate underlying assumptions in estimation, modeling, and 
data analysis. Students then organize and present thoughts and 
processes using mathematical evidence. They communicate clear 
and complete information in such a way that the reader or listener can 
understand the contextual and quantitative information in a situation. 
Students demonstrate numerical reasoning orally and in writing 
coherent statements and paragraphs. 

In the context of real-world applications, students make and 
investigate mathematical conjectures. They can defend their 
conjectures and respectfully question conjectures made by their 
classmates. This leads to the development of mathematical 
arguments and informal proofs, which are ways of expressing 
particular kinds of reasoning and justification. Explanations (oral and 
written) include mathematical arguments and rationales, not just 
procedural descriptions or summaries. Listening to others’ 
explanations gives students opportunities to develop their own 
understandings. Through communication, ideas become objects of 
reflection, refinement, discussion, and amendment. When students 
are challenged to communicate the results of their thinking to others 
orally or in writing, they learn to be clear, convincing and precise in 
their use of mathematical language. Additionally, conversations in 
which mathematical ideas are explored from multiple perspectives 
help the participants sharpen their thinking and make connections. 
This critical area of focus cross-cuts all the other critical areas of 
focus.  

CRITICAL AREA OF FOCUS #2 
Combinatorial Games 
This unit introduces and explores functions, algorithmic thinking, 
inference, modeling and computer programming concepts through a 
variety of combinatorial games. In a combinatorial game: 

• Two or more players alternate moves.  
• There must be no chance involved in the game, and both 

players must have complete information about all aspects of 
the game at all times. 

• On each move, the player whose turn it is, must have a finite 
number of possible actions. 

• After a finite number of turns, each game must have a 
designated “end” where one player is the “winner”. 

Student discourse around a “winning strategy” is a central component 
of this unit as they analyze each game. Constructing viable 
arguments, demonstrating repeated reasoning, modeling with 
mathematics and critiquing the reasoning of others are critical 
components of the unit as students develop an understanding of why 
a strategy works and determine whether the strategy will always work.  

CRITICAL AREA OF FOCUS #3 
Counting and Combinatorics 
Combinatorics is a branch of mathematics dealing with combinations 
of objects belonging to a finite set with certain constraints. In this unit, 
combinatorics are used to explore new real-world applications and 
extend understanding of previous work such as recursive formulas, 
exponential functions and sets. Students develop an understanding of 
the importance of labeling objects in a set with unique names. Models 
such as trees, lists, diagrams, tables and formulas are used to explore 
the concept of overcounting and its applications. Students refine their 
methods to be more efficient as they keep track of the number of 
objects in a set. Students construct meaningful mathematical 
justifications for a variety of counting formulas.   
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CRITICAL AREA OF FOCUS #4 
Probability 
Content associated with Statistics and Probability has a wide range of 
applications in many degree programs and careers. To prepare 
students for these careers, this unit is designed to highlight discrete 
mathematics and computer science connections to probability. 

The probability tasks in the unit develop students’ reasoning 
associated with the probability of a finite number of events. Students 
use JavaScript® to apply discrete math and computer science 
concepts to predict and verify prescribed outcomes through increasing 
amounts of simulated trials. Students construct mathematical 
arguments while looking for patterns in different mathematical models 
and simulations to determine whether the model or simulated results 
are consistent with the outcome(s) of the event.  

CRITICAL AREA OF FOCUS #5 
Connectivity and Graph Theory  
A graph is a connected graph if, for each pair of vertices, there exists 
at least one single path which joins them. 

Vertex-edge graphs and their properties are introduced and explored 
through a variety of real-world applications. These types of graphs 
can be represented by a table, drawing or list where vertices (nodes 
or “dots”) may represent the objects, people or places while 
relationships among them are represented by edges (connecting lines 
or curves). Applications of contexts allow students to explore 
foundational concepts related to both fully and minimally connected 
graphs along with their properties. Students extend their 
understanding of the ways (and how) types of graphs can be useful 
tools for tracking relationships and specific connections among 
objects or people. Mathematical structures such as weighted planar, 
directed and undirected graphs for modeling pairwise relations are 
introduced as part of this exploration and application. 

CRITICAL AREA OF FOCUS #6 
Iteration and Recursion 
Recursion is when an object is defined in terms of itself or objects of 
the same type. While recursive functions repeat by calling on 
themselves, iteration functions repeat using a set of directions. In this 
unit, students work flexibly with iterations and recursion as they 
generalize patterns to identify efficient processes in a variety of 
applications. Previous understanding of functions is extended to 
include recursive and explicit applications through real-world contexts. 
Factorial functions are introduced and explored through work with 
iteration and recursive functions. 

CRITICAL AREA OF FOCUS #7 
Cryptography 
Cryptography is the human endeavor of trying to maintain privacy in 
communication. Students use inverse functions, combinations and 
permutations to encrypt and decrypt messages. The concept of 
modulus or mods is introduced as students explore remainders 
through a variety of computer science applications. Students extend 
their understanding of non-Base-10 numbers through work with 
binary, 5-digit and 6-digit number systems to discover their limitations 
and applications in cryptography. 
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Discrete Math/Computer Science Course 
Overview 
MATHEMATICS 
ALGEBRA 
SEEING STRUCTURE IN EXPRESSIONS 

• Interpret the structure of expressions. 
• Write expressions in equivalent forms to solve problems. 

CREATING EQUATIONS 
• Create equations that describe numbers or relationships. 

FUNCTIONS 
INTERPRETING FUNCTIONS 

• Understand the concept of a function and use  
function notation. 

• Interpret functions that arise in applications in terms of  
the context. 

BUILDING FUNCTIONS 
• Build a function that models a relationship between  

two quantities. 

LINEAR, QUADRATIC, AND EXPONENTIAL MODELS 
• Construct and compare linear, quadratic and exponential 

models and solve problems. 
• Interpret expressions for functions in terms of the situation 

they model. 

GEOMETRY 
CONGRUENCE 

• Experiment with transformations in the plane. 
• Understand congruence in terms of rigid motions. 
• Prove geometric theorems both formally and informally using a 

variety of methods. 
• Make geometric constructions. 
• Classify and analyze geometric figures. 

 

MODELING IN GEOMETRY 
• Apply geometric concepts in modeling situations. 

STATISTICS AND PROBABILITY 
INTERPRETING CATEGORICAL AND QUANTITATIVE DATA 

• Summarize, represent and interpret data on a single count or 
measurement variable. 

• Summarize, represent and interpret data on two categorical 
and quantitative variables.  

• Interpret linear models. 

MAKING INFERENCES AND JUSTIFYING CONCLUSIONS  
• Understand and evaluate random processes underlying 

statistical experiments. 
• Make inferences and justify conclusions from sample surveys, 

experiments and observational studies.  

CONDITIONAL PROBABILITY AND THE RULES  
OF PROBABILITY 

• Understand independence and conditional probability and use 
them to interpret data. 

USING PROBABILITY TO MAKE DECISIONS  
• Use probability to evaluate outcomes of decisions  

MATHEMATICAL PRACTICES 
1. Make sense of problems and persevere in solving them. 
2. Reason abstractly and quantitatively.  
3. Construct viable arguments and critique the reasoning of 

others.  
4. Model with mathematics.  
5. Use appropriate tools strategically.  
6. Attend to precision.  
7. Look for and make use of structure.  
8. Look for and express regularity in repeated reasoning. 
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COMPUTER SCIENCE 
COMPUTER SCIENCE GRADES 9-12 FOUNDATIONAL LEVEL 
NETWORKS AND THE INTERNET 

• Networking 
• Cybersecurity 

DATA AND ANALYSIS 
• Data Collection and Storage 
• Visualization and Communication 
• Inference and Modeling 

ALGORITHMIC THINKING AND PROGRAMMING 
• Algorithms 
• Control Structures 
• Variables and Data Representation 
• Modularity 

ARTIFICIAL INTELLIGENCE 
• Representation & Reasoning 

IMPACTS OF COMPUTING 
• Social Interaction 
• Safety, Law and Ethics 

 

COMPUTER SCIENCE GRADES 9-12 ADVANCED LEVEL 
NETWORKS AND THE INTERNET 

• Cybersecurity 

DATA AND ANALYSIS 
• Visualization and Communication 

ALGORITHMIC THINKING AND PROGRAMMING 
• Algorithms 
• Control Structures 
• Variables and Data Representation 
• Modularity 

ARTIFICIAL INTELLIGENCE 
• Representation & Reasoning 

IMPACTS OF COMPUTING 
• Safety, Law and Ethics  

  

Computer Science Practices 
1. Fostering an Inclusive Computing Culture 
2. Collaborating Around Computing 
3. Recognizing and Defining Computational Problems 
4. Developing and Using Abstractions 
5. Creating Computational Artifacts 
6. Testing and refining Computational Artifacts 
7. Communicating About Computing 
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High School—Modeling 
Modeling links classroom mathematics and statistics to everyday life, 
work, and decision-making. Modeling is the process of choosing and 
using appropriate mathematics and statistics to analyze empirical 
situations, to understand them better and to improve decisions. 
Quantities and their relationships in physical, economic, public policy, 
social and everyday situations can be modeled using mathematical 
and statistical methods. When making mathematical models, 
technology is valuable for varying assumptions, exploring 
consequences and comparing predictions with data.  

A model can be very simple, such as writing total cost as a product of 
unit price and number bought or using a geometric shape to describe 
a physical object like a coin. Even such simple models involve making 
choices. It is up to us whether to model a coin as a three-dimensional 
cylinder or whether a two-dimensional disk works well enough for our 
purposes. Other situations—modeling a delivery route, a production 
schedule or a comparison of loan amortizations—need more 
elaborate models that use other tools from the mathematical sciences. 
Real-world situations are not organized and labeled for analysis; 
formulating tractable models, representing such models, and 
analyzing them is appropriately a creative process. Like every such 
process, this depends on acquired expertise as well as creativity.  

Some examples of such situations might include the following:  
• Estimating how much water and food is needed for emergency 

relief in a devastated city of 3 million people, and how it might 
be distributed.  

• Planning a table tennis tournament for 7 players at a club with 
4 tables, where each player plays against each other.  

• Designing the layout of the stalls at a school fair to raise as 
much money as possible.  

• Analyzing the stopping distance for a car.  
• Modeling savings account balance, bacterial colony growth or 

investment growth.  
• Engaging in critical path analysis, e.g., applied to the 

turnaround of an aircraft at an airport.  
• Analyzing risk in situations such as extreme sports, pandemics 

and terrorism.  
• Relating population statistics to individual predictions.  

In situations like these, the models devised depend on several factors: 
How precise an answer do we want or need? What aspects of the 
situation do we most need to understand, control or optimize? What 
resources of time and tools do we have? The range of models that we 
can create and analyze is also constrained by the limitations of our 
mathematical, statistical and technical skills, and our ability to 
recognize significant variables and relationships among them. 
Diagrams of various kinds, spreadsheets and other technology and 
algebra are powerful tools for understanding and solving problems 
drawn from different types of real-world situations.  
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One of the insights provided by mathematical modeling is that 
essentially the same mathematical or statistical structure can 
sometimes model seemingly different situations. Models can also 
shed light on the mathematical structures themselves, for example, as 
when a model of bacterial growth makes more vivid the explosive 
growth of the exponential function. 

The basic modeling cycle is summarized in the diagram. It involves  
(1) identifying variables in the situation and selecting those that 
represent essential features, (2) formulating a model by creating and 
selecting geometric, graphical, tabular, algebraic or statistical 
representations that describe relationships between the variables,  
(3) analyzing and performing operations on these relationships to 
draw conclusions, (4) interpreting the results of the mathematics in 
terms of the original situation, (5) validating the conclusions by 
comparing them with the situation, and then either improving the 
model or, if it is acceptable, (6) reporting on the conclusions and the 
reasoning behind them. Choices, assumptions and approximations 
are present throughout this cycle. 

In descriptive modeling, a model simply describes the phenomena or 
summarizes them in a compact form. Graphs of observations are a 
familiar descriptive model—for example, graphs of global temperature 
and atmospheric CO2 over time.  

 

Analytic modeling seeks to explain data based on deeper theoretical 
ideas, albeit with parameters that are empirically based; for example, 
exponential growth of bacterial colonies (until cut-off mechanisms 
such as pollution or starvation intervene) follows from a constant 
reproduction rate. Functions are an important tool for analyzing such 
problems.  

Graphing utilities, spreadsheets, computer algebra systems and 
dynamic geometry software are powerful tools that can be used to 
model purely mathematical phenomena, e.g., the behavior of 
polynomials as well as physical phenomena.  

MODELING STANDARDS  
Modeling is best interpreted not as a collection of isolated topics but 
rather in relation to other standards. Making mathematical models is a 
Standard for Mathematical Practice, and specific modeling standards 
appear throughout the high school standards indicated by a star  
symbol (★). 

  

PROBLEM REPORT 

COMPUTE INTERPRET 

VALIDATE FORMULATE 



DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

26 

High School—Algebra 
EXPRESSIONS 
An expression is a record of a computation with numbers, symbols 
that represent numbers, arithmetic operations, exponentiation and at 
more advanced levels, the operation of evaluating a function. 
Conventions about the use of parentheses and the order of operations 
assure that each expression is unambiguous. Creating an expression 
that describes a computation involving a general quantity requires the 
ability to express the computation in general terms, abstracting from  
specific instances.  

Reading an expression with comprehension involves analysis of its 
underlying structure. This may suggest a different but equivalent way 
of writing the expression that exhibits some different aspects of its 
meaning. For example, p + 0.05p can be interpreted as the addition of 
a 5% tax to a price p. Rewriting p + 0.05p as 1.05p shows that adding 
a tax is the same as multiplying the price by a constant factor.  

Algebraic manipulations are governed by the properties of operations 
and exponents, and the conventions of algebraic notation. At times, 
an expression is the result of applying operations to simpler 
expressions. For example, p + 0.05p is the sum of the simpler 
expressions p and 0.05p. Viewing an expression as the result of an 
operation on simpler expressions can sometimes clarify its underlying 
structure.  

A spreadsheet or a computer algebra system (CAS) can be used to 
experiment with algebraic expressions, perform complicated algebraic 
manipulations and understand how algebraic manipulations behave.  

EQUATIONS AND INEQUALITIES 
An equation is a statement of equality between two expressions, often 
viewed as a question asking for which values of the variables the 
expressions on either side are equal. These values are the solutions 
to the equation. An identity, in contrast, is true for all values of the 
variables; identities are often developed by rewriting an expression in 
an equivalent form.  

The solutions of an equation in one variable form a set of numbers; 
the solutions of an equation in two variables form a set of ordered 
pairs of numbers, which can be plotted in the coordinate plane. Two 
or more equations and/or inequalities form a system. A solution for 
such a system must satisfy every equation and inequality in the 
system.  

An equation can often be solved by successively deducing from it one 
or more simpler equations. For example, one can add the same 
constant to both sides without changing the solutions but squaring 
both sides might lead to extraneous solutions. Strategic competence 
in solving includes looking ahead for productive manipulations and 
anticipating the nature and number of solutions.  

Some equations have no solutions in a given number system but have 
a solution in a larger system. For example, the solution of x + 1 = 0 is 
an integer, not a whole number; the solution of 2x + 1 = 0 is a rational 
number, not an integer; the solutions of x2 − 2 = 0 are real numbers, 
not rational numbers; and the solutions of x2 + 2 = 0 are complex 
numbers, not real numbers.  

The same solution techniques used to solve equations can be used to 
rearrange formulas. For example, the formula for the area of  
a trapezoid, A = ((𝑏𝑏1+𝑏𝑏2 )

2
)h, can be solved for h using the same 

deductive process.  

Inequalities can be solved by reasoning about the properties of 
inequality. Many of the properties of equality continue to hold for 
inequalities and can be useful in solving them.  

CONNECTIONS WITH FUNCTIONS AND MODELING 
Expressions can define functions, and equivalent expressions define 
the same function. Asking when two functions have the same value 
for the same input leads to an equation; graphing the two functions 
allows for finding approximate solutions to the equation. Converting a 
verbal description to an equation, inequality or system of these is an 
essential skill in modeling.  
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Algebra Standards 
SEEING STRUCTURE IN EXPRESSIONS A.SSE 
Interpret the structure of expressions. 
A.SSE.1. Interpret expressions that represent a quantity in terms of  
its context. ★  

a. Interpret parts of an expression, such as terms, factors,  
and coefficients. 

b. Interpret complicated expressions by viewing one or more of 
their parts as a single entity.  

Write expressions in equivalent forms to solve problems. 
A.SSE.3 Choose and produce an equivalent form of an expression  
to reveal and explain properties of the quantity represented by  
the expression. ★ 

c. Use the properties of exponents to transform expressions for 
exponential functions. For example, 8t can be written as 23t. 

CREATING EQUATIONS A.CED 
Create equations that describe numbers or relationships. 
A.CED.1 Create equations and inequalities in one variable and use 
them to solve problems. Include equations and inequalities arising 
from linear, quadratic, simple rational, and exponential functions. ★ 

c. Extend to include more complicated function situations with the 
option to solve with technology. (A2, M3) 
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High School—Functions 
Functions describe situations where one quantity determines another. 
For example, the return on $10,000 invested at an annualized 
percentage rate of 4.25% is a function of the length of time the money 
is invested. Because we continually make theories about 
dependencies between quantities in nature and society, functions are 
important tools in the construction of mathematical models.  

In school mathematics, functions usually have numerical inputs and 
outputs and are often defined by an algebraic expression. For 
example, the time in hours it takes for a car to drive 100 miles is a 
function of the car’s speed in miles per hour, v; the rule T(v) = 100/v 
expresses this relationship algebraically and defines a function whose 
name is T.  

The set of inputs to a function is called its domain. We often infer the 
domain to be all inputs for which the expression defining a function 
has a value, or for which the function makes sense in a given context.  

A function can be described in various ways, such as by a graph,  
e.g., the trace of a seismograph; by a verbal rule, as in, “I’ll give you a 
state, you give me the capital city;” by an algebraic expression like 
f(x) = a + bx; or by a recursive rule. The graph of a function is often a 
useful way of visualizing the relationship of the function models and 
manipulating a mathematical expression for a function can throw light 
on the function’s properties.  

Functions presented as expressions can model many important 
phenomena. Two important families of functions characterized by 
laws of growth are linear functions, which grow at a constant rate, and 
exponential functions, which grow at a constant percent rate. Linear 
functions with a constant term of zero describe  
proportional relationships.  

A graphing utility or a computer algebra system can be used to 
experiment with the properties of these functions and their graphs and 
to build computational models of functions, including recursively  
defined functions. 

CONNECTIONS TO EXPRESSIONS, EQUATIONS, MODELING 
AND COORDINATES.  
Determining an output value for a particular input involves evaluating 
an expression; finding inputs that yield a given output involves solving 
an equation. Questions about when two functions have the same 
value for the same input lead to equations, whose solutions can be 
visualized from the intersection of their graphs. Because functions 
describe relationships between quantities, they are frequently used in 
modeling. Sometimes functions are defined by a recursive process, 
which can be displayed effectively using a spreadsheet or other 
technology. 
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Functions Standards 
INTERPRETING FUNCTIONS F.IF 
Understand the concept of a function and use function notation. 
F.IF.2 Use function notation, evaluate functions for inputs in their 
domains, and interpret statements that use function notation in terms 
of a context. 
F.IF.3 Recognize that sequences are functions, sometimes defined 
recursively, whose domain is a subset of the integers. For example, 
the Fibonacci sequence is defined recursively by f(0) = f(1) = 1,  
f(n + 1) = f(n) + f(n − 1) for n ≥ 1. 

BUILDING FUNCTIONS F.BF 
Build a function that models a relationship between two 
quantities. 
F.BF.1 Write a function that describes a relationship between  
two quantities.★ 

b. Combine standard function types using arithmetic operations. 
For example, build a function that models the temperature of a 
cooling body by adding a constant function to a decaying 
exponential, and relate these functions to the model. (A2, M3) 

c. Compose functions. For example, if T(y) is the temperature 
in the atmosphere as a function of height, and h(t) is the 
height of a weather balloon as a function of time, then T(h(t)) 
is the temperature at the location of the weather balloon as a 
function of time.  

F.BF.2 Write arithmetic and geometric sequences both recursively 
and with an explicit formula, use them to model situations, and 
translate between the two forms.★ 

Build new functions from existing functions. 
F.BF.4 Find inverse functions. 

b. Read values of an inverse function from a graph or a table, 
given that the function has an inverse. (A2, M3) 

c. Verify by composition that one function is the inverse  
of another. (A2, M3) 

d. Find the inverse of a function algebraically, given that the 
function has an inverse. (A2, M3) 

LINEAR, QUADRATIC, AND EXPONENTIAL MODELS F.LE 
Construct and compare linear, quadratic and exponential 
models, and solve problems. 
F.LE.1 Distinguish between situations that can be modeled with linear 
functions and with exponential functions.★ 

a. Show that linear functions grow by equal differences over equal 
intervals and that exponential function grow by equal factors 
over equal intervals.  

b. Recognize situations in which one quantity changes at a 
constant rate per unit interval relative to another. 

c. Recognize situations in which a quantity grows or decays by a 
constant percent rate per unit interval relative to another. 

Interpret expressions for functions in terms of the situation they 
model. 
F.LE.5 Interpret the parameters in a linear or exponential function in 
terms of a context.★ 
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High School—Geometry 
An understanding of the attributes and relationships of geometric 
objects can be applied in diverse contexts—interpreting a schematic 
drawing, estimating the amount of wood needed to frame a sloping 
roof, rendering computer graphics or designing a sewing pattern for 
the most efficient use of material.  

Although there are many types of geometry, school mathematics is 
devoted primarily to plane Euclidean geometry, studied both 
synthetically (without coordinates) and analytically (with coordinates). 
Euclidean geometry is characterized most importantly by the Parallel 
Postulate, that through a point not on a given line there is exactly one 
parallel line. (Spherical geometry, in contrast, has no parallel lines.)  

During high school, students begin to formalize their geometry 
experiences from elementary and middle school, using more precise 
definitions and developing careful proofs. Later in college, some 
students develop Euclidean and other geometry carefully from a small 
set of axioms.  

The concepts of congruence, similarity, and symmetry can be 
understood from the perspective of geometric transformation. 
Fundamentals are the rigid motions: translations, rotations, reflections 
and combinations of these, all of which are here assumed to preserve 
distance and angles (and therefore shapes generally). Reflections and 
rotations each explain a particular type of symmetry and the 
symmetries of an object offer insight into its attributes—as when the 
reflective symmetry of an isosceles triangle assures that its base 
angles are congruent.  

In the approach taken here, two geometric figures are defined to be 
congruent if there is a sequence of rigid motions that carries one onto 
the other. This is the principle of superposition. For triangles, 
congruence means the equality of all corresponding pairs of sides and 
all corresponding pairs of angles. During the middle grades, through 
experiences drawing triangles from given conditions, students notice 
ways to specify enough measures in a triangle to ensure that all 
triangles drawn with those measures are congruent. Once these 
triangle congruence criteria (ASA, SAS, and SSS) are established 
using rigid motions, they can be used to prove theorems about 
triangles, quadrilaterals and other geometric figures.  

Similarity transformations (rigid motions followed by dilations) define 
similarity in the same way that rigid motions define congruence, 
thereby formalizing the similarity ideas of “same shape” and “scale 
factor” developed in the middle grades. These transformations lead to 
the criterion for triangle similarity that two pairs of corresponding 
angles are congruent.  

The definitions of sine, cosine and tangent for acute angles are 
founded on right triangles and similarity, and, with the Pythagorean 
Theorem, are fundamental in many real-world and theoretical 
situations. The Pythagorean Theorem is generalized to non-right 
triangles by the Law of Cosines. Together, the Laws of Sines and 
Cosines embody the triangle congruence criteria for the cases where 
three pieces of information suffice to completely solve a triangle. 
Furthermore, these laws yield two possible solutions in the ambiguous 
case, illustrating that Side-Side-Angle is not a congruence criterion.  
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Analytic geometry connects algebra and geometry, resulting in 
powerful methods of analysis and problem-solving. Just as the 
number line associates numbers with locations in one dimension, a 
pair of perpendicular axes associates pairs of numbers with locations 
in two dimensions. This correspondence between numerical 
coordinates and geometric points allows methods from algebra to be 
applied to geometry and vice versa. The solution set of an equation 
becomes a geometric curve, making visualization a tool for doing and 
understanding algebra. Geometric shapes can be described by 
equations, making algebraic manipulation into a tool for geometric 
understanding, modeling and proof. Geometric transformations of the 
graphs of equations correspond to algebraic changes in  
their equations.  

Dynamic geometry environments provide students with experimental 
and modeling tools that allow them to investigate geometric 
phenomena in much the same way as computer algebra systems 
allow them to experiment with algebraic phenomena.  

CONNECTIONS TO EQUATIONS 
The correspondence between numerical coordinates and geometric 
points allows methods from algebra to be applied to geometry and 
vice versa. The solution set of an equation becomes a geometric 
curve, making visualization a tool for doing and understanding 
algebra. Geometric shapes can be described by equations, making 
algebraic manipulation into a tool for geometric understanding, 
modeling and proof. 
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Geometry Standards 
CONGRUENCE G.CO 
Experiment with transformations in the plane. 
G.CO.2 Represent transformations in the plane using, e.g., 
transparencies and geometry software; describe transformations as 
functions that take points in the plane as inputs and give other points 
as outputs. Compare transformations that preserve distance and 
angle to those that do not, e.g., translation versus horizontal stretch. 

MODELING IN GEOMETRY  G.MG 
Apply geometric concepts in modeling situations. 
G.MG.1 Use geometric shapes, their measures, and their properties 
to describe objects, e.g., modeling a tree trunk or a human torso as a 
cylinder.★ 
G.MG.3 Apply geometric methods to solve design problems,  
e.g., designing an object or structure to satisfy physical constraints or 
minimize cost; working with typographic grid systems based  
on ratios.★ 
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High School—Statistics and Probability  
Decisions or predictions are often based on data—numbers in 
context. These decisions or predictions would be easy if the data 
always sent a clear message, but the message is often obscured by 
variability. Statistics provides tools for describing variability in data 
and for making informed decisions that take it into account.  

Data are gathered, displayed, summarized, examined and interpreted 
to discover patterns and deviations from patterns. Quantitative data 
can be described in terms of key characteristics: measures of shape, 
center and spread. The shape of a data distribution might be 
described as symmetric, skewed, flat or bell-shaped, and it might be 
summarized by a statistic measuring center (such as mean or 
median) and a statistic measuring spread (such as standard deviation 
or interquartile range). Different distributions can be compared 
numerically using these statistics or compared visually using plots. 
Knowledge of center and spread are not enough to describe a 
distribution. Which statistics to compare, which plots to use and what 
the results of a comparison might mean, depends on the question to 
be investigated and the real-life actions to be taken.  

Randomization has two important uses in drawing statistical 
conclusions. First, collecting data from a random sample of a 
population makes it possible to draw valid conclusions about the 
whole population, taking variability into account. Second, randomly 
assigning individuals to different treatments allows a fair comparison 
of the effectiveness of those treatments. A statistically significant 
outcome is one that is unlikely to be due to chance alone, and this can 
be evaluated only under the condition of randomness. The conditions 
under which data are collected are important in drawing conclusions 
from the data; in critically reviewing uses of statistics in public media 
and other reports, it is important to consider the study design, how the 
data were gathered and the analyses employed as well as the data 
summaries and the conclusions drawn. 

Random processes can be described mathematically by using a 
probability model: a list or description of the possible outcomes (the 
sample space), each of which is assigned a probability. In situations 
such as flipping a coin, rolling a number cube or drawing a card, it 
might be reasonable to assume various outcomes are equally likely. 
In a probability model, sample points represent outcomes and 
combine to make up events; probabilities of events can be computed 
by applying the Addition and Multiplication Rules. Interpreting these 
probabilities relies on an understanding of independence and 
conditional probability, which can be approached through the analysis 
of two-way tables.  

Technology plays an important role in statistics and probability by 
making it possible to generate plots, regression functions and 
correlation coefficients, and to simulate many possible outcomes in a 
short amount of time. 

CONNECTIONS TO FUNCTIONS AND MODELING 
Functions may be used to describe data; if the data suggest a linear 
relationship, the relationship can be modeled with a regression line, 
and its strength and direction can be expressed through a  
correlation coefficient. 
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Statistics and Probability Standards 
INTERPRETING CATEGORICAL AND  
QUANTITATIVE DATA S.ID 
Summarize, represent and interpret data on a single count or 
measurement variable. 
S.ID.1 Represent data with plots on the real number line (dot plotsG, 
histograms, and box plots) in the context of real-world applications 
using the GAISE model.★ 

MAKING INFERENCES AND JUSTIFYING 
CONCLUSIONS  S.IC 
Understand and evaluate random processes underlying 
statistical experiments. 
S.IC.2 Decide if a specified model is consistent with results from a 
given data-generating process, e.g., using simulation. For example, a 
model says a spinning coin falls heads up with probability 0.5. Would 
a result of 5 tails in a row cause you to question the model?★ 

CONDITIONAL PROBABILITY AND THE RULES  
OF PROBABILITY S.CP 
Understand independence and conditional probability and use 
them to interpret data. 
S.CP.1 Describe events as subsets of a sample space (the set of 
outcomes) using characteristics (or categories) of the outcomes, or as 
unions, intersections, or complements of other events (“or,” 
“and,” “not”).★ 

Use the rules of probability to compute probabilities of 
compound events in a uniform probability model. 
S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) − P(A and 
B), and interpret the answer in terms of the model.★  
(+) S.CP.8 Apply the general Multiplication Rule in a uniform 
probability modelG, P(A and B) = P(A)⋅P(B|A) = P(B)⋅P(A|B), and 
interpret the answer in terms of the model.★ 
(+) S.CP.9 Use permutations and combinations to compute 
probabilities of compound events and solve problems.★ 

USING PROBABILITY TO MAKE DECISIONS S.MD 
Calculate expected values and use them to solve problems. 
(+) S.MD.1 Define a random variableG for a quantity of interest by 
assigning a numerical value to each event in a sample space; graph 
the corresponding probability distributionG using the same graphical 
displays as for data distributions.★ 
(+) S.MD.2 Calculate the expected valueG of a random variable; 
interpret it as the mean of the probability distribution.★ 

Use probability to evaluate outcomes of decisions. 
(+) S.MD.5 Weigh the possible outcomes of a decision by assigning 
probabilities to payoff values and finding expected values.★ 

a. Find the expected payoff for a game of chance. For 
example, find the expected winnings from a state lottery 
ticket or a game at a fast-food restaurant. 

b. Evaluate and compare strategies on the basis of expected 
values. For example, compare a high-deductible versus a 
low-deductible automobile insurance policy using various, 
but reasonable, chances of having a minor or a major 
accident. 

(+) S.MD.6 Use probabilities to make fair decisions, e.g., drawing by 
lots, using a random number generator.★  
(+) S.MD.7 Analyze decisions and strategies using probability 
concepts, e.g., product testing, medical testing, pulling a hockey 
goalie at the end of a game.★ 
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Computer Science Grades 9-12— 
Foundational Level 
NETWORKS AND THE INTERNET 
Networking 
NI.N.9-12.F.c Understand scalability and reliability of networks to 
describe the relationships and effects of how the different types of 
networks work together. 

Cybersecurity 
NI.C.9-12.F.a Examine and employ principles of cybersecurity. 
NI.C.9-12.F.b Identify physical, social and digital security risks to 
address possible attacks. 
NI.C.9-12.F.d Explore and utilize examples of encryption methods, e.g., 
Vigenere, Bacon’s cipher and Enigma 

DATA AND ANALYSIS 
Data Collection and Storage 
DA.DCS.9-12.F.a Analyze patterns in a real-world data store through 
hypothesis, testing and use of data tools to gain insight and knowledge.  

Visualization and Communication 
DA.VC.9-12.F.a Analyze the benefits and limitations of data visualization 
or multisensory artifacts and tools to communicate which is most 
appropriate to solve a real-world problem.  

Inference and Modeling 
DA.IM.9-12.F.a Evaluate a model by creating a hypothesis, testing it and 
refining it to discover connections and trends in the data. 

ALGORITHMIC THINKING AND PROGRAMMING 
Algorithms 
ATP.A.9-12.F.a Define and use appropriate problem solving strategies 
and visual artifacts to create and refine a solution to a real-world 
problem. 
ATP.A.9-12.F.b Define and implement an algorithm by decomposing 
problem requirements from a problem statement to solve a problem. 
ATP.A.9-12.F.c Define and explain iterative algorithms to understand 
how and when to apply them. 

ATP.A.9-12.F.d Define and explain recursive algorithms to understand 
how and when to apply them. 

Variables and Data Representation 
ATP.VDR.9-12.F.a Identify types of variables and data and utilize them 
to create a computer program that stores data in appropriate ways. 

Control Structures 
ATP.CS.9-12.F.a Define control structures and Boolean logic and use 
them to solve real-world scenarios. 
ATP.CS.9-12.F.b Use appropriate syntax to create and use a method. 

Modularity 
ATP.M.9-12.F.a Break down a solution into procedures using systematic 
analysis and design 
ATP.M.9-12.F.b Create computational artifacts by systematically 
organizing, manipulating and/or processing data. 

ARTIFICIAL INTELLIGENCE 
Perception 
AI.RR.9-12.F.a Categorize real-world problems as classification, 
prediction, sequential decision problems, combination search, heuristic 
search, adversarial search, logical deduction or statistical inference. 
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IMPACTS OF COMPUTING 
Social Interactions 
IC.SI.9-12.F.a Evaluate tools to increase connectivity of people in 
different cultures and career fields. 

Safety, Law and Ethics 
IC.SLE.9-12.F.b Analyze the concepts of usability and security to 
explain typical tradeoffs between them. 
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Computer Science Grades 9-12— 
Advanced Level 
NETWORKS AND THE INTERNET 
Cybersecurity 
NI.C.9-12.A.d Explore and utilize examples of encryption methods  
(e.g., Vigenére, Bacon’s cipher and Enigma). 

DATA AND ANALYSIS 
Visualization and Communication 
DA.VC.9-12.A.a Create visualization or multisensory artifacts to 
communicate insights and knowledge gained from complex data 
analysis that answers real-world questions. 

ALGORITHMIC THINKING AND PROGRAMMING 
Algorithms 
ATP.A.9-12.A.a Define and explain recursive algorithms to understand 
how and when to apply them. 
ATP.A.9-12.A.b Use iteration to effectively solve problems. 
ATP.A.9-12.A.c Use recursion to effectively solve problems. 

Variables and Data Representation 
ATP.VDR.9-12.A.a Utilize different data storage structures to store 
larger and more complex data than variables can contain.  
ATP.VDR.9-12.A.b Identify the appropriate data structures or variables 
to use to design a solution to a complex problem. 

Control Structures 
ATP.CS.9-12.A.a Write programs that use library methods and control 
structures and methods to solve a problem. 
ATP.CS.9-12.A.b Refactor a program to be smaller and more efficient. 

Modularity 
ATP.M.9-12.A.a Construct solutions to problems using student-created 
components (e.g., procedures, modules, objects). 

ARTIFICIAL INTELLIGENCE 
Representation & Reasoning 
AI.RR.9-12.A.b Illustrate breadth-first, depth-first and best-first search 
algorithms to grow a search tree. 

IMPACTS OF COMPUTING 
Safety, Law and Ethics 
IC.SLE.9-12.A.a Create a scenario to demonstrate typical tradeoffs 
between usability and security and recommend security measures 
based on these or other tradeoffs. 
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 _____________________________1.  

Adapted from Wisconsin Department 
of Public Instruction, http://dpi.wi.gov/ 
standards/mathglos.html, accessed 
March 2, 2010.  
2 Many different methods for 
computing quartiles are in use. The 
method defined here is sometimes 
called the Moore and McCabe 
method. See Langford, E., “Quartiles 
in Elementary Statistics,” Journal of 
Statistics Education Volume 14, 
Number 3 (2006).  
3. Adapted from Wisconsin Department 
of Public Instruction, op. cit.  
4. Adapted from Wisconsin Department 
of Public Instruction, op. cit. 

Glossary 
Bivariate data. Pairs of 
linked numerical 
observations. Example: a 
list of heights and weights 
for each player on a 
football team. 

Box plot. A method of 
visually displaying a 
distribution of data values 
by using the median, 
quartiles, and extremes of 
the data set. A box shows 
the middle 50% of the 
data.1  
See also: first quartile and 
third quartile. 
Expected value. For a 
random variable, the 
weighted average of its 
possible values, with 
weights given by their 
respective probabilities. 
First quartile. For a data 
set with median M, the first 
quartile is the median of 
the data values less than 
M. Example: For the data 
set {1, 3, 6, 7, 10, 12, 14, 
15, 22, 120}, the first 
quartile is 6.2  
See also: median, third 
quartile, interquartile range. 

GAISE Model See also: 
Pre-K-12 Guidelines for 
Assessment and 
Instruction in Statistics 
Education II (GAISE II): A 
Framework for Statistics 
and Data Science 
Education 
Independently combined 
probability models. Two 
probability models are said 
to be combined 
independently if the 
probability of each ordered 
pair in the combined model 
equals the product of the 
original probabilities of the 
two individual outcomes in 
the ordered pair. 
Interquartile Range. A 
measure of variation in a 
set of numerical data, the 
interquartile range is the 
distance between the first 
and third quartiles of the 
data set. Example: For the 
data set {1, 3, 6, 7, 10, 12, 
14, 15, 22, 120}, the 
interquartile range is  
15 − 6 = 9.  
See also: first quartile, third 
quartile. 

Justify: To provide a 
convincing argument for 
the truth of a statement to a 
particular audience. 
Line plot. A method of 
visually displaying a 
distribution of data values 
where each data value is 
shown as a dot or mark 
above a number line. Also 
known as a dot plot.3  
Matrix (plural ‘matrices’) A 
collection of numbers, 
symbols, expressions, or 
images arranged in a grid 
(rows and columns) to form 
a rectangular array. In 
mathematics, it is used to 
represent transformations 
or objects. In computer 
science, it may be used to 
represent a group of 
related data.  
Mean. A measure of center 
in a set of numerical data, 
computed by adding the 
values in a list and then 
dividing by the number of 
values in the list. (To be 
more precise, this defines 
the arithmetic mean) 
Example: For the data set 
{1, 3, 6, 7, 10, 12, 14, 15, 
22, 120}, the mean is 21. 

Median. A measure of 
center in a set of numerical 
data. The median of a list 
of values is the value 
appearing at the center of a 
sorted version of the list—
or the mean of the two 
central values if the list 
contains an even number 
of values. Example: For the 
data set {2, 3, 6, 7, 10, 12, 
14, 15, 22, 90}, the median 
is 11. 
Mean absolute deviation. 
A measure of variation in a 
set of numerical data, 
computed by adding the 
distances between each 
data value and the mean, 
then dividing by the 
number of data values. 
Example: For the data set  
{2, 3, 6, 7, 10, 12, 14, 15, 
22, 120}, the mean 
absolute deviation is 20. 
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Participatory Sensing. An 
approach to data collection 
and interpretation in which 
individuals, acting alone or 
in groups, use their 
personal mobile devices 
and web services to 
systematically explore 
interesting aspects of their 
worlds, ranging from health 
to culture. 
Pre-K-12 Guidelines for 
Assessment and 
Instruction in Statistics 
Education II (GAISE II): A 
Framework for Statistics 
and Data Science 
Education. It is an updated 
report endorsed by the 
American Statistical 
Association (ASA) and the 
National Council of 
Teachers of Mathematics 
(NCTM) to enhance the 
Statistics standards. Like 
the GAISE I, it provides a 
framework of 
recommendations for 
developing students’ 
foundational skills in 
statistical reasoning in 
three levels across the 
school years, described as 
levels A, B, and C. GAISE I 
and GAISE II can be found 

on the American Statistical 
Association website.  
Probability distribution. 
The set of possible values 
of a random variable with a 
probability assigned to 
each. 
Probability. A number 
between 0 and 1 is used to 
quantify the likelihood of 
processes that have 
uncertain outcomes (such 
as tossing a coin, selecting 
a person at random from a 
group of people, tossing a 
ball at a target, or testing 
for a medical condition). 
Probability model. A 
probability model is used to 
assign probabilities to 
outcomes of a chance 
process by examining the 
nature of the process. The 
set of all outcomes is called 
the sample space, and 
their probabilities sum to 1. 
See also: uniform 
probability model. 

Prove: To provide a logical 
argument that 
demonstrates the truth of a 
statement. A proof is 
typically composed of a 
series of justifications, 
which are often single 
sentences and may be 
presented informally  
or formally. 
Random variable. An 
assignment of a numerical 
value to each outcome in a 
sample space. 
Sample space. In a 
probability model for a 
random process, a list of 
the individual outcomes 
that are to be considered. 
Scatter plot. A graph in 
the coordinate plane 
represents a set of 
bivariate data. For 
example, the heights and 
weights of a group of 
people could be displayed 
on a scatter plot.4

Third quartile. For a data 
set with median M, the third 
quartile is the median of 
the data values greater 
than M. Example: For the 
data set {2, 3, 6, 7, 10, 12, 
14, 15, 22, 120}, the third 
quartile is 15.  
See also: median, first 
quartile,  
interquartile range. 
Uniform probability 
model. A probability model 
which assigns equal 
probability to all outcomes. 
See also: probability 
model. 
Verify: To check the truth 
or correctness of a 
statement in specific cases

https://www.amstat.org/education/guidelines-for-assessment-and-instruction-in-statistics-education-(gaise)-reports
https://www.amstat.org/education/guidelines-for-assessment-and-instruction-in-statistics-education-(gaise)-reports


DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

40 

Computer Science References  
Bureau of Labor Statistics. (2015). Labor force statistics from the Current Population Survey [Data file]. Retrieved from http://www.bls.gov/cps  

Change the Equation. (2016, August 9). New data: Bridging the computer science access gap [Blog post]. Retrieved from 
http://changetheequation.org/blog/new-data-bridging-computer-science-access-gap-0 (no longer available) 

College Board. (2016). AP program participation and performance data 2015 [Data file]. Retrieved from 
https://research.collegeboard.org/programs/ap/data/archived/ap-2015  

Denner, J., Martinez, J., Thiry, H., & Adams, J. (2015). Computer science and fairness: Integrating a social justice perspective into an after-school 
program. Science Education and Civic Engagement: An International Journal, 6(2): 41–54.  

Goode, J. (2008, March). Increasing diversity in K–12 computer science: Strategies from the field. ACM SIGCSE Bulletin, 40(1), 362–366.  

Hansen, A., Hansen, E., Dwyer, H., Harlow, D., & Franklin, D. (2016). Differentiating for diversity: Using universal design for learning in computer 
science education. Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 376–381).  

K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org  

Kumar, A. N. (2012, July). A study of stereotype threat in computer science. Proceedings of the 17th ACM Annual Conference on Innovation and 
Technology in Computer Science Education (pp. 273–278).  

Margolis, J., Ryoo, J., Sandoval, C., Lee, C., Goode, J., & Chapman, G. (2012). Beyond access: Broadening participation in high school computer 
science. ACM Inroads, 3(4), 72–78.  

Margolis, J., Goode, J., Chapman, G., & Ryoo, J. J. (2014). That classroom ‘magic.’ Communications of the ACM, 57(7), 31–33.  

Morgan, R., & Klaric, J. (2007). AP students in college: An analysis of five-year academic careers. Research report no. 2007-4. Retrieved from 
https://eric.ed.gov/?id=ED561034  

Quorum [Computer software]. (2019). Retrieved from https://quorumlanguage.com/  

Snodgrass, M. R., Israel, M., & Reese, G. (2016). Instructional supports for students with disabilities in K–5 computing: Findings from a cross-case 
analysis. Computers & Education, 100, 1–17.  

Strawhacker, A. L., & Bers, M. U. (2014, August). ScratchJr: Computer programming in early childhood education as a pathway to academic 
readiness and success. Poster presented at DR K–12 PI Meeting, Washington, DC  

http://www.bls.gov/cps
https://research.collegeboard.org/programs/ap/data/archived/ap-2015
http://www.k12cs.org/
https://eric.ed.gov/?id=ED561034
https://quorumlanguage.com/


DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

41 

Acknowledgements  
MATH STANDARDS ADVISORY COMMITTEE MEMBERS 
Aaron Altose 
The Ohio Mathematics Association of  
Two-Year Colleges 

Jeremy Beardmore 
Ohio Educational Service Center Association 

Jessica Burchett 
Ohio Teachers of English to Speakers of  
Other Languages 

Jeanne Cerniglia 
Ohio Education Association 

Margie Coleman 
Cochair 

Jason Feldner 
Ohio Association for Career and  
Technical Education 

Brad Findell 
Ohio Higher Education 

Gregory D. Foley 
Ohio Mathematics and Science Coalition 

Margaret (Peggy) Kasten 
Cochair 

Courtney Koestler 
Ohio Mathematics Education  
Leadership Council 

Scott Mitter 
Ohio Math and Science Supervisors 

Tabatha Nadolny 
Ohio Federation of Teachers 

Eydie Schilling 
Ohio Association for Supervision and 
Curriculum Development  

Kim Yoak 
Ohio Council of Teachers of Mathematics 

 
MATH STANDARDS WORKING GROUP MEMBERS
Ali Fleming 
Teacher, Bexley City, C 

Gary Herman 
Curriculum Specialist/Coordinator, 
Putnam County ESC, NW 

William Husen 
Higher Education, Ohio State University, C 

Kristen Kelly 
Curriculum Specialist/Coordinator, Cleveland 
Metropolitan School District, NE 

Endora Kight Neal 
Curriculum Specialist/Coordinator, Cleveland 
Metropolitan School District, NE 

Dawn Machacek 
Teacher, Toledo Public Schools, NW 

Sherryl Proctor 
Teacher, Vantage Career Center, NW 

Tess Rivero 
Teacher, Bellbrook-Sugarcreek Schools, SW 

Jennifer Walls 
Teacher, Akron Public Schools, NE 

Gaynell Wamer 
Teacher, Toledo City, NW 

Sandra Wilder 
Teacher, Akron Public Schools, N

 



DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

42 

COMPUTER SCIENCE ADVISORY COMMITTEE MEMBERS (2022) 
Eva Bradshaw 
National Center for Women and Information 
Technology 

Carmen Bryson 
East Cleveland City Schools 

Crystal Franklin 
Cleveland State University 
Kelly Gaier Evans 
Battelle-Ohio STEM Learning Network 
Stephanie Hoeppner 
Live Oaks Career Campus 
Jim Johnson 
Morgan Local Schools 
CSTA Ohio 

Ryan Johnston 
C-TEC of Licking County  
Megan Kinsey 
Apple 
Chelsey Cook-Kohn 
Cleveland Metropolitan School District 
Cleveland State University 
Alex Kotran 
The AI Education Project 
Mike Lawson 
Morgan Junior High School 
Cristina Nowak 
The AI Education Project 

Krystina Pratt 
Teaching & Learning Collaborative 
Jason Scherer 
Field Local, OEA  
Kelly Shrewsberry 
Teaching & Learning Collaborative 
Stanley Smith 
The University of Akron 
Michelle Snow 
C-TEC 
Randy Tucker 
Tech Corps

  



DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

43 

COMPUTER SCIENCE WORKING GROUP MEMBERS (2022)
Jennifer Blackledge 
Ohio Council for Teachers of Mathematics 

Tracy Bronner 
Clermont Northeastern Local 

Betty Cantley 
Retired teacher 

Elizabeth Curtis 
Cleveland Metropolitan 

Karen Bergreen 
Logan Hocking Local 

Elizabeth Davis 
LexisNexis 

Roberta Bandfield 
Corpus Christi Academy 

John Davis III 
Greater Cleveland Partnership/OHTec 

Bryan Drost 
Rocky River City 

Ray Gaier  
Kings Local 

Gary Herman 
Ohio Chamber of Commerce  

Shanshan Huang 
Educational Solutions Co. 

Krissy Machamer 
Licking Heights Local 

Jennifer Nichols  
Computer Science Teachers Association 

Amanda O'Mara  
Microsoft TEALS  

Tom O'Neill 
Butler Tech 

Tammi Ramsey  
Washington Court House City 

Darrin Spondike  
Auburn Career Center 

James Stanton 
Battelle Education 

Sarah Thornton 
Pickaway-Ross Career and Technology 
Center/Zane Trace High School 

Courtney Webb 
Euclid City Schools 

Vicki Willett  
Licking Heights Local 

Matthew Williams 
Avon Lake City 

Matthew Yuhasz 
Columbus City 

 
  



DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

44 

COMPUTER SCIENCE WRITING TEAM MEMBERS
Julie Hagaman 
Tri-County North School District 

Gary Herman 
Putnam County ESC 

Marvin “Mel” Hoffert 
Sycamore Community 

Jennifer Humphrey 
Cleveland Metropolitan 

Diane Kahle 
Upper Arlington City 

Christopher Kaminski 
Fairview Park City 

Barbara Kenne 
West Clermont Local 

Bonnie Kovacic 
Perry Local 

Carlo Miraldi 
Great Oaks Career Campuses 

Valerie Moga 
Hudson City 

Shellu Muma 
Ottoville Local 

Pat Murakami 
Dayton Regional STEM School 

Lisa Murray 
Vermilion Local 

Lynne Pachnowski 
University of Akron 

Erin Pekar 
Maple Heights City 

Krystina Pratt 
New Albany Plain Local 

Karen Plaster 
University of Akron 

Leslie Slaven 
Lakota Local 

Renee Snyder 
Teaching & Learning Collaborative 

Darrin Spondike 
Auburn City 

Rebecca Stanek 
Stow-Munroe Falls City 

James Stanton 
Maumee City 

Deborah Wiley 
North Canton City Schools 
Kent State Stark University 

Jonathon Wilson 
New Richmond Exempted Village 

Robert Wyant 
Austintown Local 

 

  



DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

45 

OHIO HIGH SCHOOL MATH PATHWAYS ADVISORY COUNCIL
Trina Barrell 
Buckeye Association of School Administrators 
(BASA) 

Michael Broadwater 
Ohio Association of Secondary School 
Administrators (OASSA) 

Mark Cortez 
Higher education admissions 

Kevin Duff 
Ohio Excels 

Shawn Grime 
Ohio School Counselor Association (OSCA) 

Kelly Hogan 
Ohio Association of Community Colleges 
(OACC) 

Aaron Johnson 
Ohio Association for Career and Technical 
Education (Ohio ACTE) 

Tom Kaczmarek 
Ohio Education Association (OEA) 

Peggy Kasten 
Ohio Mathematics and Science Coalition 
(OMSC) 

Todd Martin 
The Ohio 8 Coalition 

Ricardo Moena 
Ohio Mathematics Initiative (OMI) 

Carrie Rice 
Ohio Federation of Teachers (OFT) 

Brad Ritchey 
Ohio School Boards Association (OSBA)/ 
Buckeye Association of School Administrators 
(BASA) 

Barbara Varley 
Ohio Parent Teacher Association (Ohio PTA) 

Heather Wukelich 
Ohio Council of Teachers of Mathematics 
(OCTM) 

 

 
OHIO HIGH SCHOOL MATH PATHWAYS ARCHITECTS 
Deborah Ackley 
Teacher, Toledo Public Schools, NW 

Dave Burkhart 
Teacher, New Lexington City Schools, SE 

Doug Darbro 
Higher Education, Shawnee State University, 
SE 

Brad Findell 
Higher Education, The Ohio State University, C 

Derek Gulling 
Teacher, Edison Local Schools  
(Jefferson County), NE 

Christina Hamman 
Curriculum Specialist/Coordinator, 
Medina City Schools, NE 

Gary Herman 
Curriculum Specialist/Coordinator, 
Putnam County ESC, NW 

Ruth Hopkins 
Teacher, Symmes Valley Local Schools, SE 

Endora Kight Neal 
Higher Education, Cuyahoga Community 
College and Curriculum Specialist/Coordinator, 
Cleveland Metropolitan School District, NE 

Scott Mitter 
Teacher, Kettering City Schools, SE 

Jennifer Montgomery 
Teacher, Wayne Local Schools, SW 

Rachael Newell 
Teacher, Perrysburg Exempted Village, NW 

Stephanie Stafford 
Higher Education, Cincinnati State Technical 
and Community College, SW 

Lee Wayand 
Higher Education, Columbus State Community 
College, C 

Richelle Zbinden 
Teacher, Miami Valley Career Technology  
Center, SW 

  



DISCRETE MATHEMATICS/COMPUTER SCIENCE COURSE STANDARDS | DRAFT 2023 

 
  

 

46 

OHIO HIGH SCHOOL DISCRETE MATHEMATICS/COMPUTER SCIENCE WORKGROUP
Katherine Blazyk 
Teacher, Beavercreek City Schools 

Jennifer Boughton 
Teacher, Northwest Local Schools 

Frank Carraher 
Curriculum Specialist/Coordinator, 
ESC of the Western Reserve 

Bryan Drost 
Curriculum Specialist/Coordinator, Rocky River 
Schools 

Carole Katz 
Curriculum Specialist/Coordinator, Beachwood 
City Schools 

Andrew King 
Teacher, Mississinawa Valley Schools 

Christopher Orban 
Higher Education, The Ohio State University 

Doug Roberts 
Teacher, Metro Early College High School 

James Stanton 
Teacher, Maumee City Schools 

Jeff VanArnhem 
Teacher, Olmsted Falls City 

Carol VanFossen 
Teacher, Metro Early College High School 
Lee Wayand 
Higher Education, Columbus State Community 
College 
 

 


	Table of Contents
	Introduction to Ohio’s Learning Standards for Mathematics
	Process
	UNDERSTANDING MATHEMATICS

	Introduction to Ohio’s Learning Standards for Computer Science (2022)
	GUIDING ASSUMPTIONS
	OVERVIEW OF THE COMPUTER SCIENCE STANDARDS CONTENT

	A Note on Rigor and Algebra 2 Equivalency
	What is Discrete Math?
	THE NEED FOR COMPUTER SCIENCE
	EARNING SIMULTANEOUS CREDIT

	Standards for Mathematical Practice
	CONNECTING THE STANDARDS FOR MATHEMATICAL PRACTICE TO THE STANDARDS FOR MATHEMATICAL CONTENT

	Computer Science Practices1
	Equity and Computer Science1
	COMPUTER SCIENCE FOR ALL
	EFFORTS TO INCREASE EQUITY
	Equity and the Computer Science Standards

	Mathematical Standards for High School
	Process
	How To Read The High School Content Standards

	Critical Areas of Focus
	Critical Area of Focus #1
	Communication and Analysis

	Critical Area of Focus #2
	Combinatorial Games

	Critical Area of Focus #3
	Counting and Combinatorics

	Critical Area of Focus #4
	Probability

	Critical Area of Focus #5
	Connectivity and Graph Theory

	Critical Area of Focus #6
	Iteration and Recursion

	Critical Area of Focus #7
	Cryptography


	Discrete Math/Computer Science Course Overview
	MATHEMATICS
	ALGEBRA
	SEEING STRUCTURE IN EXPRESSIONS
	CREATING EQUATIONS

	FUNCTIONS
	INTERPRETING FUNCTIONS
	BUILDING FUNCTIONS
	LINEAR, QUADRATIC, AND EXPONENTIAL MODELS

	GEOMETRY
	CONGRUENCE
	MODELING IN GEOMETRY

	STATISTICS AND PROBABILITY
	INTERPRETING CATEGORICAL AND QUANTITATIVE DATA
	MAKING INFERENCES AND JUSTIFYING CONCLUSIONS
	CONDITIONAL PROBABILITY AND THE RULES  OF PROBABILITY
	USING PROBABILITY TO MAKE DECISIONS


	COMPUTER SCIENCE
	COMPUTER SCIENCE GRADES 9-12 FOUNDATIONAL LEVEL
	NETWORKS AND THE INTERNET
	DATA AND ANALYSIs
	ALGORITHMIC THINKING AND PROGRAMMING
	ARTIFICIAL INTELLIGENCE
	IMPACTS OF COMPUTING

	COMPUTER SCIENCE GRADES 9-12 ADVANCED LEVEL
	NETWORKS AND THE INTERNET
	DATA AND ANALYSIS
	ALGORITHMIC THINKING AND PROGRAMMING
	ARTIFICIAL INTELLIGENCE
	IMPACTS OF COMPUTING



	MATHEMATICAL PRACTICES
	Computer Science Practices
	High School—Modeling
	modeling standards

	Problem
	report
	compute
	interpret
	validate
	Formulate
	High School—Algebra
	EXPRESSIONS
	EQUATIONS AND INEQUALITIES
	CONNECTIONS WITH FUNCTIONS AND MODELING

	Algebra Standards
	SEEING STRUCTURE IN EXPRESSIONS A.SSE
	CREATING EQUATIONS A.CED

	High School—Functions
	CONNECTIONS TO EXPRESSIONS, EQUATIONS, MODELING AND COORDINATES.

	Functions Standards
	INTERPRETING FUNCTIONS F.IF
	BUILDING FUNCTIONS F.BF
	LINEAR, QUADRATIC, AND EXPONENTIAL MODELS F.LE

	High School—Geometry
	Connections to Equations

	Geometry Standards
	CONGRUENCE G.CO
	MODELING IN GEOMETRY  G.MG

	High School—Statistics and Probability
	connections to functions and modeling

	Statistics and Probability Standards
	INTERPRETING CATEGORICAL AND  QUANTITATIVE DATA S.ID
	MAKING INFERENCES AND JUSTIFYING CONCLUSIONS  S.IC
	CONDITIONAL PROBABILITY AND THE RULES  OF PROBABILITY S.CP
	USING PROBABILITY TO MAKE DECISIONS S.MD

	Computer Science Grades 9-12— Foundational Level
	NETWORKS AND THE INTERNET
	DATA AND ANALYSIS

	ALGORITHMIC THINKING AND PROGRAMMING
	ARTIFICIAL INTELLIGENCE
	IMPACTS OF COMPUTING


	Computer Science Grades 9-12— Advanced Level
	NETWORKS AND THE INTERNET
	DATA AND ANALYSIS
	ALGORITHMIC THINKING AND PROGRAMMING
	ARTIFICIAL INTELLIGENCE
	IMPACTS OF COMPUTING

	Glossary
	Computer Science References
	Acknowledgements
	math Standards ADVISORY COMMITTEE MEMBERs
	math Standards WORKING GROUP MEMBERs
	COMPUTER SCIENCE ADVISORY COMMITTEE MEMBERS (2022)


