Table of Contents

Introduction ................................................................................................... 3
Standards for Mathematical Practice .......................................................... 4
How to Read the Grade Level Standards .................................................... 7
  Kindergarten ..................................................................................... 8
  Grade 1 ............................................................................................ 12
  Grade 2 ............................................................................................ 16
  Grade 3 ............................................................................................ 21
  Grade 4 ............................................................................................ 27
  Grade 5 ............................................................................................ 33
  Grade 6 ............................................................................................ 39
  Grade 7 ............................................................................................ 45
  Grade 8 ............................................................................................ 51
Mathematical Content Standards for High School .................................. 56
How to Read the High School Content Standards ................................... 57
  High School—Modeling ................................................................. 59
  High School—Number and Quantity ............................................. 61
  High School—Algebra ................................................................... 65
  High School—Functions ............................................................... 71
  High School—Geometry ............................................................... 77
  High School—Statistics and Probability ...................................... 84
  Note on Courses and Transitions ................................................ 89
Glossary ....................................................................................................... 90

Table 1. Common Addition and Subtraction Situations ............................... 94
Table 2. Common Multiplication and Division Situations .......................... 95
Table 3. Properties of Operations ........................................................... 96
Table 4. Properties of Equality ............................................................... 96
Table 5. Properties of Inequality ............................................................. 97
Acknowledgements .................................................................................... 98
Introduction

PROCESS
To better prepare students for college and careers, educators used public comments along with their professional expertise and experience to revise Ohio’s Learning Standards. In spring 2016, the public gave feedback on the standards through an online survey. Advisory committee members, representing various Ohio education associations, reviewed all survey feedback and identified needed changes to the standards. Then they sent their directives to working groups of educators who proposed the actual revisions to the standards. The Ohio Department of Education sent their revisions back out for public comment in July 2016. Once again, the Advisory Committee reviewed the public comments and directed the Working Group to make further revisions. Upon finishing their work, the department presented the revisions to the Senate and House education committees as well as the State Board of Education.

UNDERSTANDING MATHEMATICS
These standards define what students should understand and be able to do in their study of mathematics. Asking a student to understand something means asking a teacher to assess whether the student has understood it. But what does mathematical understanding look like? One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student’s mathematical maturity, why a particular mathematical statement is true, or where a mathematical rule comes from. There is a world of difference between a student who can summon a mnemonic device to expand a product such as $(a + b)(x + y)$ and a student who can explain where the mnemonic device comes from. The student who can explain the rule understands the mathematics at a much deeper level. Then the student may have a better chance to succeed at a less familiar task such as expanding $(a + b + c)(x + y)$. Mathematical understanding and procedural skill are equally important, and both are assessable using mathematical tasks of sufficient richness.

The content standards are grade-specific. However, they do not define the intervention methods or materials necessary to support students who are well below or well above grade-level expectations. It is also beyond the scope of the standards to define the full range of supports appropriate for English language learners and for students with special needs. At the same time, all students must have the opportunity to learn and meet the same high standards if they are to access the knowledge and skills necessary in their post-school lives. Educators should read the standards allowing for the widest possible range of students to participate fully from the outset. They should provide appropriate accommodations to ensure maximum participation of students with special education needs. For example, schools should allow students with disabilities in reading to use Braille, screen reader technology or other assistive devices. Those with disabilities in writing should have scribes, computers, or speech-to-text technology. In a similar vein, educators should interpret the speaking and listening standards broadly to include sign language. No set of grade-specific standards can fully reflect the great variety in abilities, needs, learning rates, and achievement levels of students in any given classroom. However, the standards do provide clear signposts along the way to help all students achieve the goal of college and career readiness.

The standards begin on page 4 with the eight Standards for Mathematical Practice.
Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important “processes and proficiencies” with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council’s report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently, and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy).

1. Make sense of problems and persevere in solving them.
Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving more complicated problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.
Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.
Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
Standards for Mathematical Practice, continued

4. Model with mathematics.
Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community.

By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later.

They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.
Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.
Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.
Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see $7 \times 8$ equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as $2 \times 7$ and the 9 as $2 + 7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complex things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers $x$ and $y$. 
Standards for Mathematical Practice, continued

8. Look for and express regularity in repeated reasoning.
Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1, 2)$ with slope 3, students might abstract the equation $(y - 2)/(x - 1) = 3$. Noticing the regularity in the way terms cancel when expanding $(x - 1)(x + 1)$, $(x - 1)(x^2 + x + 1)$, and $(x - 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

CONNECTING THE STANDARDS FOR MATHEMATICAL PRACTICE TO THE STANDARDS FOR MATHEMATICAL CONTENT

The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction.

The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word “understand” are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices. In this respect, those content standards which set an expectation of understanding are potential “points of intersection” between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics.
How to Read the Grade Level Standards

Standards define what students should understand and be able to do.

Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.

Domains are larger groups of related standards. Standards from different domains may sometimes be closely related.

G shows there is a definition in the glossary for this term.

These standards do not dictate curriculum or teaching methods. For example, just because topic A appears before topic B in the standards for a given grade, does not necessarily mean that teachers must teach topic A before topic B. A teacher might prefer to teach topic B before topic A, or might choose to highlight connections by teaching topic A and topic B at the same time. Or, a teacher might prefer to teach a topic of his or her own choosing that leads, as a byproduct, to students reaching the standards for topics A and B.

What students can learn at any particular grade level depends upon what they have learned before. Ideally then, each standard in this document might have been phrased in the form, “Students who already know ... should next come to learn ....” But at present this approach is unrealistic—not least because existing education research cannot specify all such learning pathways. Therefore, educators, researchers, and mathematicians used their collective experience and professional judgment along with state and international comparisons as a basis to make grade placements for specific topics.
Kindergarten

In Kindergarten, instructional time should focus on two critical areas:

**Critical Area 1: Representing, relating, and operating on whole numbers, initially with sets of objects**
Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such as counting objects in a set; counting out a given number of objects; comparing sets or numerals; and modeling simple joining and separating situations with sets of objects, or eventually with equations such as $5 + 2 = 7$ and $7 - 2 = 5$. (Kindergarten students should see addition and subtraction equations, and student writing of equations in kindergarten is encouraged, but it is not required.) Students choose, combine, and apply effective strategies for answering quantitative questions, including quickly recognizing the cardinalities of small sets of objects, counting and producing sets of given sizes, counting the number of objects in combined sets, or counting the number of objects that remain in a set after some are taken away.

**Critical Area 2: Describing shapes and space. More learning time in Kindergarten should be devoted to number than to other topics**
Students describe their physical world using geometric ideas, e.g., shape, orientation, spatial relations, and vocabulary. They identify, name, and describe basic two-dimensional shapes, such as squares, triangles, circles, rectangles, and hexagons, presented in a variety of ways, e.g., with different sizes and orientations, as well as three-dimensional shapes such as cubes, cones, cylinders, and spheres. They use basic shapes and spatial reasoning to model objects in their environment and to construct more complicated shapes. They identify the measurable attributes of shapes.
KINDERGARTEN OVERVIEW

COUNTING AND CARDINALITY
- Know number names and the count sequence.
- Count to tell the number of objects.
- Compare numbers.

OPERATIONS AND ALGEBRAIC THINKING
- Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

NUMBER AND OPERATIONS IN BASE TEN
- Work with numbers 11–19 to gain foundations for place value.

MEASUREMENT AND DATA
- Identify, describe, and compare measurable attributes.
- Classify objects and count the number of objects in each category.

GEOMETRY
- Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).
- Describe, compare, create, and compose shapes.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Kindergarten

COUNTING AND CARDINALITY

Know number names and the count sequence.

K.CC.1 Count to 100 by ones and by tens.
K.CC.2 Count forward within 100 beginning from any given number other than 1.
K.CC.3 Write numerals from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).

Count to tell the number of objects.

K.CC.4 Understand the relationship between numbers and quantities; connect counting to cardinality using a variety of objects including pennies.
   a. When counting objects, establish a one-to-one relationship by saying the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.
   b. Understand that the last number name said tells the number of objects counted and that the number of objects is the same regardless of their arrangement or the order in which they were counted.
   c. Understand that each successive number name refers to a quantity that is one larger.

K.CC.5 Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.

OPERATIONS AND ALGEBRAIC THINKING

Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

K.OA.1 Represent addition and subtraction with objects, fingers, mental images, drawings, sounds such as claps, acting out situations, verbal explanations, expressions, or equations. Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)
K.OA.2 Solve addition and subtraction problems (written or oral), and add and subtract within 10 by using objects or drawings to represent the problem.
K.OA.3 Decompose numbers and record compositions for numbers less than or equal to 10 into pairs in more than one way by using objects and, when appropriate, drawings or equations.
K.OA.4 For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or, when appropriate, an equation.
K.OA.5 Fluently add and subtract within 5.
NUMBER AND OPERATIONS IN BASE TEN        K.NBT
Work with numbers 11–19 to gain foundations for place value.
K.NBT.1 Compose and decompose numbers from 11 to 19 into a group of ten ones and some further ones by using objects and, when appropriate, drawings or equations; understand that these numbers are composed of a group of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

MEASUREMENT AND DATA            K.MD
Identify, describe, and compare measurable attributes.
K.MD.1 Identify and describe measurable attributes (length, weight, and height) of a single object using vocabulary terms such as long/short, heavy/light, or tall/short.
K.MD.2 Directly compare two objects with a measurable attribute in common to see which object has “more of” or “less of” the attribute, and describe the difference. For example, directly compare the heights of two children, and describe one child as taller/shorter.

Classify objects and count the number of objects in each category.
K.MD.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. The number of objects in each category should be less than or equal to ten. Counting and sorting coins should be limited to pennies.

GEOMETRY                  K.G
Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).
K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.
K.G.2 Correctly name shapes regardless of their orientations or overall size.
K.G.3 Identify shapes as two-dimensional (lying in a plane, “flat”) or three-dimensional (“solid”).

Describe, compare, create, and compose shapes.
K.G.4 Describe and compare two- or three-dimensional shapes, in different sizes and orientations, using informal language to describe their commonalities, differences, parts, and other attributes.
K.G.5 Model shapes in the world by building shapes from components, e.g., sticks and clay balls, and drawing shapes.
K.G.6 Combine simple shapes to form larger shapes.
Grade 1

In Grade 1, instructional time should focus on four critical areas:

Critical Area 1: Developing understanding of addition, subtraction, and strategies for addition and subtraction within 20
Students develop strategies for adding and subtracting whole numbers based on their prior work with small numbers. They use a variety of models, including discrete objects and length-based models, e.g., cubes connected to form lengths, to model add-to, take-from, put-together, take-apart, and compare situations to develop meaning for the operations of addition and subtraction, and to develop strategies to solve arithmetic problems with these operations. Students understand connections between counting and addition and subtraction, e.g., adding two is the same as counting on two. They use properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these properties, e.g., “making tens”, to solve addition and subtraction problems within 20. By comparing a variety of solution strategies, children build their understanding of the relationship between addition and subtraction.

Critical Area 2: Developing understanding of whole number relationships and place value, including grouping in tens and ones
Students develop, discuss, and use efficient, accurate, and generalizable methods to add within 100 and subtract multiples of 10. They compare whole numbers (at least to 100) to develop understanding of and solve problems involving their relative sizes. They think of whole numbers between 10 and 100 in terms of tens and ones (especially recognizing the numbers 11 to 19 as composed of a ten and some ones). Through activities that build number sense, they understand the order of the counting numbers and their relative magnitudes. Students use money as a tool to reinforce concepts of place value using pennies (ones) and dimes (tens).

Critical Area 3: Developing understanding of linear measurement and measuring lengths as iterating length units
Students develop an understanding of the meaning and processes of measurement, including underlying concepts such as iterating (the mental activity of building up the length of an object with equal-sized units) and the transitivity principle for indirect measurement.

Critical Area 4: Reasoning about attributes of, and composing and decomposing geometric shapes
Students compose and decompose plane or solid figures, e.g., put two triangles together to make a quadrilateral, and build understanding of part-whole relationships as well as the properties of the original and composite shapes. As they combine shapes, they recognize them from different perspectives and orientations, describe their geometric attributes, and determine how they are alike and different, to develop the background for measurement and for initial understandings of properties such as congruence and symmetry.
GRADE 1 OVERVIEW

OPERATIONS AND ALGEBRAIC THINKING
• Represent and solve problems involving addition and subtraction.
• Understand and apply properties of operations and the relationship between addition and subtraction.
• Add and subtract within 20.
• Work with addition and subtraction equations.

NUMBER AND OPERATIONS IN BASE TEN
• Extend the counting sequence.
• Understand place value.
• Use place value understanding and properties of operations to add and subtract.

MEASUREMENT AND DATA
• Measure lengths indirectly and by iterating length units.
• Work with time and money.
• Represent and interpret data.

GEOMETRY
• Reason with shapes and their attributes.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Grade 1

OPERATIONS AND ALGEBRAIC THINKING  1.OA

Represent and solve problems involving addition and subtraction.

1.OA.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. See Table 1, page 94.

1.OA.2 Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)

Understand and apply properties of operations and the relationship between addition and subtraction.

1.OA.3 Apply properties of operations as strategies to add and subtract. For example, if 8 + 3 = 11 is known, then 3 + 8 = 11 is also known (Commutative Property of Addition); to add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 = 12 (Associative Property of Addition). Students need not use formal terms for these properties.

1.OA.4 Understand subtraction as an unknown-addend problem. For example, subtract 10 – 8 by finding the number that makes 10 when added to 8.

Add and subtract within 20.

1.OA.5 Relate counting to addition and subtraction, e.g., by counting on 2 to add 2.

1.OA.6 Add and subtract within 20, demonstrating fluency with various strategies for addition and subtraction within 10. Strategies may include counting on; making ten, e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14; decomposing a number leading to a ten, e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9; using the relationship between addition and subtraction, e.g., knowing that 8 + 4 = 12, one knows 12 – 8 = 4; and creating equivalent but easier or known sums, e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13.

Work with addition and subtraction equations.

1.OA.7 Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6; 7 = 8 – 1; 5 + 2 = 2 + 5; 4 + 1 = 5 + 2.

1.OA.8 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations: 8 + ☐ = 11; 5 = ☐ – 3; 6 + 6 = ☐.

NUMBER AND OPERATIONS IN BASE TEN  1.NBT

Extend the counting sequence.

1.NBT.1 Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

Understand place value.

1.NBT.2 Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases: 10 can be thought of as a bundle of ten ones — called a “ten”; the numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones; and the numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
NUMBER AND OPERATIONS IN BASE TEN, continued

Understand place value. (continued)

1.NBT.3 Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

Use place value understanding and properties of operations to add and subtract.

1.NBT.4 Add within 100, including adding a two-digit number and a one-digit number and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; record the strategy with a written numerical method (drawings and, when appropriate, equations) and explain the reasoning used. Understand that when adding two-digit numbers, tens are added to tens; ones are added to ones; and sometimes it is necessary to compose a ten.

1.NBT.5 Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.

1.NBT.6 Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

MEASUREMENT AND DATA

Measure lengths indirectly and by iterating length units.

1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.

1.MD.2 Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

Work with time and money.

1.MD.3 Work with time and money.
   a. Tell and write time in hours and half-hours using analog and digital clocks.
   b. Identify pennies and dimes by name and value.

Represent and interpret data.

1.MD.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

GEOMETRY

Reason with shapes and their attributes.

1.G.1 Distinguish between defining attributes, e.g., triangles are closed and three-sided, versus non-defining attributes, e.g., color, orientation, overall size; build and draw shapes that possess defining attributes.

1.G.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. Students do not need to learn formal names such as "right rectangular prism."

1.G.3 Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of or four of the shares in real-world contexts.

Understand for these examples that decomposing into more equal shares creates smaller shares.
Grade 2
In Grade 2, instructional time should focus on four critical areas:

Critical Area 1: Extending understanding of base-ten notation.
Students extend their understanding of the base-ten system. This includes ideas of counting in fives, tens, and multiples of hundreds, tens, and ones, as well as number relationships involving these units, including comparing. Students understand multi-digit numbers (up to 1000) written in base-ten notation, recognizing that the digits in each place represent amounts of thousands, hundreds, tens, or ones, e.g., 853 is 8 hundreds + 5 tens + 3 ones.

Critical Area 2: Building fluency with addition and subtraction
Students use their understanding of addition to develop fluency with addition and subtraction within 100. They solve problems within 1000 by applying their understanding of models for addition and subtraction, and they develop, discuss, and use efficient, accurate, and generalizable methods to compute sums and differences of whole numbers in base-ten notation, using their understanding of place value and the properties of operations. They select and accurately apply methods that are appropriate for the context and the numbers involved to mentally calculate sums and differences for numbers with only tens or only hundreds. They apply their understanding of addition and subtraction to data represented in the picture and bar graphs.

Critical Area 3: Using standard units of measure.
Students recognize the need for standard units of measure (centimeter and inch), and they use rulers and other measurement tools with the understanding that linear measure involves an iteration of units. They recognize that the smaller the unit, the more iterations they need to cover a given length. They also apply number concepts solving real-world problems.

Critical Area 4: Describing and analyzing shapes
Students describe and analyze shapes by examining their sides and angles. Students investigate, describe, and reason about decomposing and combining shapes to make other shapes. Through building, drawing, and analyzing two- and three-dimensional shapes, students develop a foundation for understanding area, volume, congruence, similarity, and symmetry in later grades. They apply number concepts in real-world problems.
GRADE 2 OVERVIEW

OPERATIONS AND ALGEBRAIC THINKING
- Represent and solve problems involving addition and subtraction.
- Add and subtract within 20.
- Work with equal groups of objects to gain foundations for multiplication.

NUMBER AND OPERATIONS IN BASE TEN
- Understand place value.
- Use place value understanding and properties of operations to add and subtract.

MEASUREMENT AND DATA
- Measure and estimate lengths in standard units.
- Relate addition and subtraction to length.
- Work with time and money.
- Represent and interpret data.

GEOMETRY
- Reason with shapes and their attributes.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Grade 2

OPERATIONS AND ALGEBRAIC THINKING 2.OA
Represent and solve problems involving addition and subtraction.
2.OA.1 Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. See Table 1, page 94.

Add and subtract within 20.
2.OA.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. See standard 1.OA.6 for a list of mental strategies.

Work with equal groups of objects to gain foundations for multiplication.
2.OA.3 Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends.
2.OA.4 Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

NUMBER AND OPERATIONS IN BASE TEN 2.NBT
Understand place value.
2.NBT.1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:

a. 100 can be thought of as a bundle of ten tens - called a “hundred.”
b. The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).

2.NBT.2 Count forward and backward within 1,000 by ones, tens, and hundreds starting at any number; skip-count by 5s starting at any multiple of 5.
2.NBT.3 Read and write numbers to 1,000 using base-ten numerals, number names, expanded form, and equivalent representations, e.g., 716 is 700 + 10 + 6, or 6 + 700 + 10, or 6 ones and 71 tens, etc.
2.NBT.4 Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.

Use place value understanding and properties of operations to add and subtract.
2.NBT.5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
2.NBT.6 Add up to four two-digit numbers using strategies based on place value and properties of operations.
NUMBER AND OPERATIONS IN BASE TEN, continued
Use place value understanding and properties of operations to add and subtract. (continued)
2.NBT.7 Add and subtract within 1,000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; record the strategy with a written numerical method (drawings and, when appropriate, equations) and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, hundreds are added or subtracted from hundreds, tens are added or subtracted from tens, ones are added or subtracted from ones; and sometimes it is necessary to compose or decompose tens or hundreds.
2.NBT.8 Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
2.NBT.9 Explain why addition and subtraction strategies work, using place value and the properties of operations. Explanations may be supported by drawings or objects.

MEASUREMENT AND DATA 2.MD
Measure and estimate lengths in standard units.
2.MD.1 Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.
2.MD.2 Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.
2.MD.3 Estimate lengths using units of inches, feet, centimeters, and meters.
2.MD.4 Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.
Relate addition and subtraction to length.
2.MD.5 Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same whole number units, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)
2.MD.6 Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2,..., and represent whole number sums and differences within 100 on a number line diagram.

Work with time and money.
2.MD.7 Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.
2.MD.8 Solve problems with money.
   a. Identify nickels and quarters by name and value.
   b. Find the value of a collection of quarters, dimes, nickels, and pennies.
   c. Solve word problems by adding and subtracting within 100, dollars with dollars and cents with cents (not using dollars and cents simultaneously) using the $ and ¢ symbols appropriately (not including decimal notation).

Represent and interpret data.
2.MD.9 Generate measurement data by measuring lengths of several objects to the nearest whole unit or by making repeated measurements of the same object. Show the measurements by creating a line plot, where the horizontal scale is marked off in whole number units.
MEASUREMENT AND DATA, continued
Represent and interpret data. (continued)

2.MD.10 Organize, represent, and interpret data with up to four categories; complete picture graphs when single-unit scales are provided; complete bar graphs when single-unit scales are provided; solve simple put-together, take-apart, and compare problems in a graph. See Table 1, page 94.

GEOMETRY

Reason with shapes and their attributes.

2.G.1 Recognize and identify triangles, quadrilaterals, pentagons, and hexagons based on the number of sides or vertices. Recognize and identify cubes, rectangular prisms, cones, and cylinders.

2.G.2 Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

2.G.3 Partition circles and rectangles into two, three, or four equal shares; describe the shares using the words halves, thirds, or fourths and quarters, and use the phrases half of, third of, or fourth of and quarter of. Describe the whole as two halves, three thirds, or four fourths in real-world contexts. Recognize that equal shares of identical wholes need not have the same shape.
Grade 3
In Grade 3, instructional time should focus on five critical areas:

**Critical Area 1: Developing understanding of multiplication and division and strategies for multiplication and division within 100**
Students develop an understanding of the meanings of multiplication and division of whole numbers through activities and problems involving equal-sized groups, arrays, and area models; multiplication is finding an unknown product, and division is finding an unknown factor in these situations. For equal-sized group situations, division can require finding the unknown number of groups or the unknown group size. Students use properties of operations to calculate products of whole numbers, using increasingly sophisticated strategies based on these properties to solve multiplication and division problems involving single-digit factors. By comparing a variety of solution strategies, students learn the relationship between multiplication and division.

**Critical Area 2: Developing understanding of fractions, especially unit fractions (fractions with numerator 1)**
Students develop an understanding of fractions, beginning with unit fractions. Students view fractions in general as being built out of unit fractions, and they use fractions along with visual fraction models to represent parts of a whole. Students understand that the size of a fractional part is relative to the size of the whole. For example, \(\frac{1}{2}\) of the paint in a small bucket could be less paint than \(\frac{1}{3}\) of the paint in a larger bucket, but \(\frac{1}{3}\) of a ribbon is longer than \(\frac{1}{5}\) of the same ribbon because when the ribbon is divided into 3 equal parts, the parts are longer than when the ribbon is divided into 5 equal parts. Students are able to use fractions to represent numbers equal to, less than, and greater than one. They solve problems that involve comparing fractions by using visual fraction models and strategies based on noticing equal numerators or denominators.

**Critical Area 3: Developing understanding of the structure of rectangular arrays and of area**
Students recognize area as an attribute of two-dimensional regions. They measure the area of a shape by finding the total number of same-size units of area required to cover the shape without gaps or overlaps, a square with sides of unit length being the standard unit for measuring area. Students understand that rectangular arrays can be decomposed into identical rows or into identical columns. By decomposing rectangles into rectangular arrays of squares, students connect area to multiplication, and justify using multiplication to determine the area of a rectangle.

**Critical Area 4: Describing and analyzing two-dimensional shapes**
Students describe, analyze, and compare properties of two-dimensional shapes. They compare and classify shapes by their sides and angles, and connect these with definitions of shapes. Students also relate their fraction work to geometry by expressing the area of part of a shape as a unit fraction of the whole.

**Critical Area 5: Solving multi-step problems**
Students apply previous understanding of addition and subtraction strategies and algorithms to solve multi-step problems. They reason abstractly and quantitatively by modeling problem situations with equations or graphs, assessing their processes and results, and justifying their answers through mental computation and estimation strategies. Students incorporate multiplication and division within 100 to solve multi-step problems with the four operations.
GRADE 3 OVERVIEW

OPERATIONS AND ALGEBRAIC THINKING
- Represent and solve problems involving multiplication and division.
- Understand properties of multiplication and the relationship between multiplication and division.
- Multiply and divide within 100.
- Solve problems involving the four operations, and identify and explain patterns in arithmetic.

NUMBER AND OPERATIONS IN BASE TEN
- Use place value understanding and properties of operations to perform multi-digit arithmetic. A range of strategies and algorithms may be used.

NUMBER AND OPERATIONS—FRACTIONS
- Develop understanding of fractions as numbers. Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.

MEASUREMENT AND DATA
- Solve problems involving money, measurement, and estimation of intervals of time, liquid volumes, and masses of objects.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

GEOMETRY
- Reason with shapes and their attributes.
- Represent and interpret data.
- Geometric measurement: understand concepts of area and relate area to multiplication and to addition.
- Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.
Grade 3

OPERATIONS AND ALGEBRAIC THINKING

Represent and solve problems involving multiplication and division.

3.OA.1 Interpret products of whole numbers, e.g., interpret $5 \times 7$ as the total number of objects in 5 groups of 7 objects each. (Note: These standards are written with the convention that $a \times b$ means $a$ groups of $b$ objects each; however, because of the commutative property, students may also interpret $5 \times 7$ as the total number of objects in 7 groups of 5 objects each).

3.OA.2 Interpret whole number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.

3.OA.3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. See Table 2, page 95. Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)

3.OA.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times \square = 48; 5 = \square \div 3; 6 \times 6 = \square$.

Understand properties of multiplication and the relationship between multiplication and division.

3.OA.5 Apply properties of operations as strategies to multiply and divide. For example, if $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known (Commutative Property of Multiplication); $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$ (Associative Property of Multiplication); knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find $8 \times 7$ as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$ (Distributive Property). Students need not use formal terms for these properties.

3.OA.6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8.

Multiply and divide within 100.

3.OA.7 Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division, e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$, or properties of operations. Limit to division without remainders. By the end of Grade 3, know from memory all products of two one-digit numbers.

Solve problems involving the four operations, and identify and explain patterns in arithmetic.

3.OA.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter or a symbol, which stands for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. This standard is limited to problems posed with whole numbers and having whole number answers. Students may use parentheses for clarification since algebraic order of operations is not expected.
OPERATIONS AND ALGEBRAIC THINKING, continued

Solve problems involving the four operations, and identify and explain patterns in arithmetic. (continued)

3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.

NUMBER AND OPERATIONS IN BASE TEN

3.NBT

Use place value understanding and properties of operations to perform multi-digit arithmetic. A range of strategies and algorithms may be used.

3.NBT.1 Use place value understanding to round whole numbers to the nearest 10 or 100.

3.NBT.2 Fluently add and subtract within 1,000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

3.NBT.3 Multiply one-digit whole numbers by multiples of 10 in the range 10-90, e.g., 9 × 80, 5 × 60 using strategies based on place value and properties of operations.

NUMBER AND OPERATIONS—FRACTIONS

3.NF

Develop understanding of fractions as numbers. Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.

3.NF.1 Understand a fraction \( \frac{1}{b} \) as the quantity formed by 1 part when a whole is partitioned into \( b \) equal parts; understand a fraction \( \frac{a}{b} \) as the quantity formed by \( a \) parts of size \( \frac{1}{b} \).

3.NF.2 Understand a fraction as a number on the number line; represent fractions on a number line diagram.

a. Represent a fraction \( \frac{1}{b} \) on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into \( b \) equal parts. Recognize that each part has size \( \frac{1}{b} \) and that the endpoint of the part based at 0 locates the number \( \frac{1}{b} \) on the number line.

b. Represent a fraction \( \frac{a}{b} \) (which may be greater than 1) on a number line diagram by marking off \( a \) lengths \( \frac{1}{b} \) from 0. Recognize that the resulting interval has size \( \frac{a}{b} \) and that its endpoint locates the number \( \frac{a}{b} \) on the number line.

3.NF.3 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

a. Understand two fractions as equivalent (equal) if they are the same size or the same point on a number line.

b. Recognize and generate simple equivalent fractions, e.g., \( \frac{1}{2} = \frac{2}{4} \), \( \frac{4}{6} = \frac{2}{3} \). Explain why the fractions are equivalent, e.g., by using a visual fraction model.

c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form \( 3 = \frac{3}{1} \); recognize that \( \frac{6}{1} = 6 \); locate \( \frac{4}{4} \) and 1 at the same point of a number line diagram.

d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols \( > \), \( = \), or \( < \), and justify the conclusions, e.g., by using a visual fraction model.
MEASUREMENT AND DATA 3.MD

Solve problems involving money, measurement, and estimation of intervals of time, liquid volumes, and masses of objects.

3.MD.1 Work with time and money.
   a. Tell and write time to the nearest minute. Measure time intervals in minutes (within 90 minutes). Solve real-world problems involving addition and subtraction of time intervals (elapsed time) in minutes, e.g., by representing the problem on a number line diagram or clock.
   b. Solve word problems by adding and subtracting within 1,000, dollars with dollars and cents with cents (not using dollars and cents simultaneously) using the $ and ¢ symbol appropriately (not including decimal notation).

3.MD.2 Measure and estimate liquid volumes and masses of objects using standard units of grams, kilograms, and liters. Add, subtract, multiply, or divide whole numbers to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. Excludes multiplicative comparison problems involving notions of "times as much"; see Table 2, page 95.

Represent and interpret data.

3.MD.3 Create scaled picture graphs to represent a data set with several categories. Create scaled bar graphs to represent a data set with several categories. Solve two-step "how many more" and "how many less" problems using information presented in the scaled graphs. For example, create a bar graph in which each square in the bar graph might represent 5 pets, then determine how many more/less in two given categories.

3.MD.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by creating a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.

Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

3.MD.5 Recognize area as an attribute of plane figures and understand concepts of area measurement.
   a. A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area.
   b. A plane figure which can be covered without gaps or overlaps by $n$ unit squares is said to have an area of $n$ square units.

3.MD.6 Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).

3.MD.7 Relate area to the operations of multiplication and addition.
   a. Find the area of a rectangle with whole number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
   b. Multiply side lengths to find areas of rectangles with whole number side lengths in the context of solving real-world and mathematical problems, and represent whole number products as rectangular areas in mathematical reasoning.
   c. Use tiling to show in a concrete case that the area of a rectangle with whole number side lengths $a$ and $b + c$ is the sum of $a \times b$ and $a \times c$ (represent the distributive property with visual models including an area model).
   d. Recognize area as additive. Find the area of figures composed of rectangles by decomposing into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real-world problems.
MEASUREMENT AND DATA, continued

Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

3.MD.8 Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

GEOMETRY

3.G

Reason with shapes and their attributes.

3.G.1 Draw and describe triangles, quadrilaterals (rhombuses, rectangles, and squares), and polygons (up to 8 sides) based on the number of sides and the presence or absence of square corners (right angles).

3.G.2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $\frac{1}{4}$ of the area of the shape.
Grade 4

In Grade 4, instructional time should focus on three critical areas:

Critical Area 1: Developing an understanding and fluency with multi-digit multiplication, and developing understanding of dividing to find quotients involving multi-digit dividends as part of effectively and efficiently performing multi-digit arithmetic

Students generalize their understanding of place value to 1,000,000, understanding the relative sizes of numbers in each place. They apply their understanding of models for multiplication (equal-sized groups, arrays, and area models), place value, and properties of operations, in particular the distributive property, as they develop, discuss, and use efficient, accurate, and generalizable methods to compute products of multi-digit whole numbers. Depending on the numbers and the context, they select and accurately apply appropriate methods to estimate or mentally calculate products. They develop fluency with efficient procedures for multiplying whole numbers; understand and explain why the procedures work based on place value and properties of operations; and use them to solve problems. Students apply their understanding of models for division, place value, properties of operations, and the relationship of division to multiplication as they develop, discuss, and use efficient, accurate, and generalizable procedures to find quotients involving multi-digit dividends. They select and accurately apply appropriate methods to estimate and mentally calculate quotients, and interpret remainders based upon the context. Students efficiently and effectively add and subtract multi-digit whole numbers.

Critical Area 2: Developing an understanding of fraction equivalence, addition and subtraction of fractions with like denominators, and multiplication of fractions by whole numbers

Students develop understanding of fraction equivalence and operations with fractions. They recognize that two different fractions can be equal, e.g., \( \frac{15}{9} = \frac{5}{3} \), and they develop methods such as using models for generating and recognizing equivalent fractions. Students extend previous understandings about how fractions are built from unit fractions, composing fractions from unit fractions, decomposing fractions into unit fractions, and using the meaning of fractions and the meaning of multiplication to multiply a fraction by a whole number. Students solve measurement problems involving conversion of measurements and fractions.

Critical Area 3: Understanding that geometric figures can be analyzed and classified based on their properties, such as having parallel sides, perpendicular sides, and particular angle measures

Students describe, analyze, compare, and classify two-dimensional shapes. Through building, drawing, and analyzing two-dimensional shapes, students deepen their understanding of properties of two-dimensional objects and the use of them to solve problems.
GRADE 4 OVERVIEW

OPERATIONS AND ALGEBRAIC THINKING
- Use the four operations with whole numbers to solve problems.
- Gain familiarity with factors and multiples.
- Generate and analyze patterns.

NUMBER AND OPERATIONS IN BASE TEN
- Generalize place value understanding for multi-digit whole numbers less than or equal to 1,000,000.
- Use place value understanding and properties of operations to perform multi-digit arithmetic with whole numbers less than or equal to 1,000,000.

NUMBER AND OPERATIONS—FRACTIONS
- Extend understanding of fraction equivalence and ordering limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.
- Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. (Fractions need not be simplified).
- Understand decimal notation for fractions, and compare decimal fractions limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

MEASUREMENT AND DATA
- Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
- Represent and interpret data.
- Geometric measurement: understand concepts of angle and measure angles.

GEOMETRY
- Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
Grade 4

OPERATIONS AND ALGEBRAIC THINKING

4.OA

Use the four operations with whole numbers to solve problems.

4.OA.1 Interpret a multiplication equation as a comparison, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

4.OA.2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. See Table 2, page 95. Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)

4.OA.3 Solve multistep word problems posed with whole numbers and having whole number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Gain familiarity with factors and multiples.

4.OA.4 Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1-100 is prime or composite.

4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

NUMBER AND OPERATIONS IN BASE TEN

4.NBT

Generalize place value understanding for multi-digit whole numbers less than or equal to 1,000,000.

4.NBT.1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right by applying concepts of place value, multiplication, or division.

4.NBT.2 Read and write multi-digit whole numbers using standard form, word form, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons. Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.

4.NBT.3 Use place value understanding to round multi-digit whole numbers to any place through 1,000,000.

Use place value understanding and properties of operations to perform multi-digit arithmetic with whole numbers less than or equal to 1,000,000.

4.NBT.4 Fluently add and subtract multi-digit whole numbers using a standard algorithm.

4.NBT.5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
NUMBER AND OPERATIONS IN BASE TEN, continued
Use place value understanding and properties of operations to perform multi-digit arithmetic with whole numbers less than or equal to 1,000,000. (continued)

4.NBT.6 Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

NUMBER AND OPERATIONS—FRACTIONS 4.NF
Extend understanding of fraction equivalence and ordering limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.

4.NF.1 Explain why a fraction \( \frac{a}{b} \) is equivalent to a fraction \( \frac{(n \times a)}{(n \times b)} \) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

4.NF.2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as \( \frac{1}{2} \). Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. (Fractions need not be simplified).

4.NF.3 Understand a fraction \( \frac{a}{b} \) with \( a > 1 \) as a sum of fractions \( \frac{1}{b} \).
   a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
   b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: \( \frac{3}{8} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \); \( \frac{3}{8} = \frac{1}{8} + \frac{2}{8} \); \( 2 \frac{1}{8} = 1 + 1 + \frac{1}{8} = \frac{8}{8} + \frac{8}{8} + \frac{1}{8} \).
   c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
   d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
NUMBER AND OPERATIONS—FRACTIONS, continued
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. (Fractions need not be simplified). (continued)

4.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
   a. Understand a fraction $\frac{a}{b}$ as a multiple of $\frac{1}{b}$. For example, use a visual fraction model to represent $\frac{5}{4}$ as the product $5 \times (\frac{1}{4})$, recording the conclusion by the equation $\frac{5}{4} = 5 \times (\frac{1}{4})$ or $\frac{5}{4} = (\frac{1}{4}) + (\frac{1}{4}) + (\frac{1}{4}) + (\frac{1}{4})$.
   b. Understand a multiple of $\frac{a}{b}$ as a multiple of $\frac{1}{b}$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (\frac{2}{5})$ as $6 \times (\frac{1}{5})$, recognizing this product as $\frac{6}{5}$.
      (In general, $n \times (\frac{a}{b}) = \frac{n \times a}{b}$.)
   c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $\frac{3}{8}$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Understand decimal notation for fractions, and compare decimal fractions limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.

4.NF.5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express $\frac{3}{10}$ as $\frac{30}{100}$, and add $\frac{3}{10} + \frac{4}{100} = \frac{34}{100}$. In general, students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators, but addition and subtraction with unlike denominators is not a requirement at this grade.

4.NF.6 Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $\frac{62}{100}$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.

4.NF.7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual model.

MEASUREMENT AND DATA

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

4.MD.1 Know relative sizes of the metric measurement units within one system of units. Metric units include kilometer, meter, centimeter, and millimeter; kilogram and gram; and liter and milliliter. Express a larger measurement unit in terms of a smaller unit. Record measurement conversions in a two-column table. For example, express the length of a 4-meter rope in centimeters. Because 1 meter is 100 times as long as a 1 centimeter, a two-column table of meters and centimeters includes the number pairs 1 and 100, 2 and 200, 3 and 300,....
MEASUREMENT AND DATA, continued

4.MD
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. (continued)

4.MD.2 Solve real-world problems involving money, time, and metric measurement.
   a. Using models, add and subtract money and express the answer in decimal notation.
   b. Using number line diagrams, clocks, or other models, add and subtract intervals of time in hours and minutes.
   c. Add, subtract, and multiply whole numbers to solve metric measurement problems involving distances, liquid volumes, and masses of objects.

4.MD.3 Develop efficient strategies to determine the area and perimeter of rectangles in real-world situations and mathematical problems. For example, given the total area and one side length of a rectangle, solve for the unknown factor, and given two adjacent side lengths of a rectangle, find the perimeter.

Represent and interpret data.

4.MD.4 Display and interpret data in graphs (picture graphs, bar graphs, and line plots) to solve problems using numbers and operations for this grade.

Geometric measurement: understand concepts of angle and measure angles.

4.MD.5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement.
   a. Understand an angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $\frac{1}{360}$ of a circle is called a “one-degree angle,” and can be used to measure angles.
   b. Understand an angle that turns through $n$ one-degree angles is said to have an angle measure of $n$ degrees.

4.MD.6 Measure angles in whole number degrees using a protractor. Sketch angles of specified measure.

4.MD.7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real-world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

GEOMETRY

4.G
Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

4.G.1 Draw points, lines, line segments, rays, angles (right, acute, and obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

4.G.2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size.
Grade 5

In Grade 5, instructional time should focus on five critical areas:

Critical Area 1: Developing fluency with addition and subtraction of fractions and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions)

Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. They apply their understanding of fractions to solve real-world problems. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.)

Critical Area 2: Extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations

Students develop understanding of why division procedures work based on the meaning of base-ten numerals and properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately.

Critical Area 3: Developing understanding of volume

Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real-world and mathematical problems.

Critical Area 4: Modeling numerical relationships with the coordinate plane

Based on previous work with measurement and number lines, students develop understanding of the coordinate plane as a tool to model numerical relationships. These initial understandings provide the foundation for work with negative numbers, and ratios and proportional relationships in Grade Six and functional relationships in further grades.

Critical Area 5: Classifying two-dimensional figures by properties

Students build on their understanding of angle measures and parallel and perpendicular lines to explore the properties of triangles and quadrilaterals. They develop a foundation for classifying triangles or quadrilaterals by comparing the commonalities and differences of triangles or between types of quadrilaterals.
GRADE 5 OVERVIEW

OPERATIONS AND ALGEBRAIC THINKING
- Write and interpret numerical expressions.
- Analyze patterns and relationships.

NUMBER AND OPERATIONS IN BASE TEN
- Understand the place value system.
- Perform operations with multi-digit whole numbers and with decimals to hundredths.

NUMBER AND OPERATIONS—FRACTIONS
- Use equivalent fractions as a strategy to add and subtract fractions. (Fractions need not be simplified).
- Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (Fractions need not be simplified).

MEASUREMENT AND DATA
- Convert like measurement units within a given measurement system.
- Represent and interpret data.
- Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

GEOMETRY
- Graph points on the coordinate plane to solve real-world and mathematical problems.
- Classify two-dimensional figures into categories based on their properties.
Grade 5

OPERATIONS AND ALGEBRAIC THINKING

5.OA

Write and interpret numerical expressions.

5.OA.1 Use parentheses in numerical expressions, and evaluate expressions with this symbol. Formal use of algebraic order of operations is not necessary.

5.OA.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18,932 + 921)$ is three times as large as $18,932 + 921$, without having to calculate the indicated sum or product.

Analyze patterns and relationships.

5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

NUMBER AND OPERATIONS IN BASE TEN

5.NBT

Understand the place value system.

5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $\frac{1}{10}$ of what it represents in the place to its left.

5.NBT.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole number exponents to denote powers of 10.

5.NBT.3 Read, write, and compare decimals to thousandths.

a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (\frac{1}{10}) + 9 \times (\frac{1}{100}) + 2 \times (\frac{1}{1000})$.

b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons.

5.NBT.4 Use place value understanding to round decimals to any place, millions through hundredths.

Perform operations with multi-digit whole numbers and with decimals to hundredths.

5.NBT.5 Fluently multiply multi-digit whole numbers using a standard algorithm.

5.NBT.6 Find whole number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
NUMBER AND OPERATIONS IN BASE TEN, continued

Perform operations with multi-digit whole numbers and with decimals to hundredths. (continued)

5.NBT.7 Solve real-world problems by adding, subtracting, multiplying, and dividing decimals using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction, or multiplication and division; relate the strategy to a written method and explain the reasoning used.

- a. Add and subtract decimals, including decimals with whole numbers, (whole numbers through the hundreds place and decimals through the hundredths place).
- b. Multiply whole numbers by decimals (whole numbers through the hundreds place and decimals through the hundredths place).
- c. Divide whole numbers by decimals and decimals by whole numbers (whole numbers through the tens place and decimals less than one through the hundredths place using numbers whose division can be readily modeled). For example, 0.75 divided by 5, 18 divided by 0.6, or 0.9 divided by 3.

NUMBER AND OPERATIONS—FRACTIONS

5.NF

Use equivalent fractions as a strategy to add and subtract fractions. (Fractions need not be simplified).

5.NF.1 Add and subtract fractions with unlike denominators (including mixed numbers and fractions greater than 1) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, use visual models and properties of operations to show \( \frac{2}{3} + \frac{5}{4} = \frac{8}{12} + \frac{15}{12} = \frac{23}{12} \).

In general, \( \frac{a}{b} + \frac{c}{d} = \left(\frac{a}{b} \times \frac{d}{d}\right) + \left(\frac{c}{d} \times \frac{b}{b}\right) = \frac{ad + bc}{bd} \).

5.NF.2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result \( \frac{2}{5} + \frac{1}{2} = \frac{3}{7} \), by observing that \( \frac{3}{7} < \frac{1}{2} \).

Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (Fractions need not be simplified).

5.NF.3 Interpret a fraction as division of the numerator by the denominator \( \left(\frac{a}{b} = a \div b\right) \). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret \( \frac{3}{4} \) as the result of dividing 3 by 4, noting that \( \frac{3}{4} \) multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size \( \frac{3}{4} \). If 9 people want to share a 50 pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
NUMBER AND OPERATIONS—FRACTIONS, continued

Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (Fractions need not be simplified). (continued)

5.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

a. Interpret the product \((\frac{a}{b}) \times q\) as a parts of a partition of \(q\) into \(b\) equal parts, equivalently, as the result of a sequence of operations \(a \times q \div b\). For example, use a visual fraction model to show \((\frac{2}{3}) \times 4 = \frac{8}{3}\), and create a story context for this equation. Do the same with \((\frac{2}{3}) \times (\frac{4}{5}) = \frac{8}{15}\). (In general, \((\frac{a}{b}) \times (\frac{c}{d}) = \frac{ac}{bd}\).)

b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.5 Interpret multiplication as scaling (resizing).

a. Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.

b. Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence \(a/b = (mxa)/(mxb)\) to the effect of multiplying \(a/b\) by 1.

5.NF.6 Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

5.NF.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. In general, students able to multiply fractions can develop strategies to divide fractions, by reasoning about the relationship between multiplication and division, but division of a fraction by a fraction is not a requirement at this grade.

a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for \((\frac{1}{3}) \div 4\), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that \((\frac{1}{3}) \div 4 = (\frac{1}{12})\) because \((\frac{1}{12}) \times 4 = (\frac{1}{3})\).

b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for \(4 \div (\frac{1}{5})\), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that \(4 \div (\frac{1}{5}) = 20\) because \(20 \times (\frac{1}{5}) = 4\).

c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share \(\frac{1}{2}\) pound of chocolate equally? How many \(\frac{1}{3}\) cup servings are in 2 cups of raisins?

MEASUREMENT AND DATA

Convert like measurement units within a given measurement system.

5.MD.1 Know relative sizes of these U.S. customary measurement units: pounds, ounces, miles, yards, feet, inches, gallons, quarts, pints, cups, fluid ounces, hours, minutes, and seconds. Convert between pounds and ounces; miles and feet; yards, feet, and inches; gallons, quarts, pints, cups, and fluid ounces; hours, minutes, and seconds in solving multi-step, real-world problems.
MEASUREMENT AND DATA, continued

Represent and interpret data.

5.MD.2 Display and interpret data in graphs (picture graphs, bar graphs, and line plots\(^c\)) to solve problems using numbers and operations for this grade, e.g., including U.S. customary units in fractions \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\), or decimals.

Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

5.MD.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
   a. A cube with side length 1 unit, called a “unit cube,” is said to have “one cubic unit” of volume, and can be used to measure volume.
   b. A solid figure which can be packed without gaps or overlaps using \(n\) unit cubes is said to have a volume of \(n\) cubic units.

5.MD.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

5.MD.5 Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.
   a. Find the volume of a right rectangular prism with whole number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole number products as volumes, e.g., to represent the Associative Property of Multiplication.
   b. Apply the formulas \(V = \ell \times w \times h\) and \(V = B \times h\) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.
   c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

GEOMETRY

Graph points on the coordinate plane to solve real-world and mathematical problems.

5.G.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond, e.g., \(x\)-axis and \(x\)-coordinate, \(y\)-axis and \(y\)-coordinate.

5.G.2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Classify two-dimensional figures into categories based on their properties.

5.G.3 Identify and describe commonalities and differences between types of triangles based on angle measures (equiangular, right, acute, and obtuse triangles) and side lengths (isosceles, equilateral, and scalene triangles).

5.G.4 Identify and describe commonalities and differences between types of quadrilaterals based on angle measures, side lengths, and the presence or absence of parallel and perpendicular lines, e.g., squares, rectangles, parallelograms, trapezoids\(^c\), and rhombuses.
Grade 6

In Grade 6, instructional time should focus on five critical areas:

Critical Area 1: Connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems
Students use reasoning about multiplication and division to solve ratio and rate problems about quantities. By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative size of quantities, students connect their understanding of multiplication and division with ratios and rates. Thus students expand the scope of problems for which they can use multiplication and division to solve problems, and they connect ratios and fractions. Students solve a wide variety of problems involving ratios and rates.

Critical Area 2: Completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers
Students use the meaning of fractions, the meanings of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for dividing fractions make sense. Students use these operations to solve problems. Students extend their previous understandings of number and the ordering of numbers to the full system of rational numbers, which includes negative rational numbers, and in particular negative integers. They reason about the order and absolute value of rational numbers and about the location of points in all four quadrants of the coordinate plane.

Critical Area 3: Writing, interpreting, and using expressions and equations
Students understand the use of variables in mathematical expressions. They write expressions and equations that correspond to given situations, evaluate expressions, and use expressions and formulas to solve problems. Students understand that expressions in different forms can be equivalent, and they use the properties of operations to rewrite expressions in equivalent forms. Students know that the solutions of an equation are the values of the variables that make the equation true. Students use properties of operations and the idea of maintaining the equality of both sides of an equation to solve simple one-step equations. Students construct and analyze tables, such as tables of quantities that are in equivalent ratios, and they use equations (such as $3x = y$) to describe relationships between quantities.

Critical Area 4: Developing understanding of statistical problem solving
Building on and reinforcing their understanding of number, students begin to develop their ability to think statistically. The GAISE model is used as a statistical problem solving framework. Students recognize that a data distribution may not have a definite center and that different ways to measure center yield different values. The median measures center in the sense that it is roughly the middle value. The mean measures center in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, and also in the sense that it is a balance point. Students recognize that a measure of variability (range and interquartile range) can also be useful for summarizing data because two very different sets of data can have the same mean and median yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, identifying clusters, gaps, peaks, and outliers in a distribution, considering the context in which the data were collected.

Critical Area 5: Solving problems involving area, surface area, and volume
Students in Grade 6 also build on their work with area in elementary school by reasoning about relationships among shapes to determine area, surface area, and volume. They find areas of right triangles, other triangles, and special quadrilaterals by decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles. Using these methods, students discuss, develop, and justify formulas for areas of triangles and parallelograms. Students find areas of polygons and surface areas of prisms and pyramids by decomposing them into pieces whose area they can determine. They reason about right rectangular prisms with fractional side lengths to extend formulas for the volume of a right rectangular prism to fractional side lengths. They prepare for work on scale drawings and constructions in Grade 7 by drawing polygons in the coordinate plane.
GRADE 6 OVERVIEW

RATIO AND PROPORTIONAL RELATIONSHIPS
- Understand ratio concepts and use ratio reasoning to solve problems.

THE NUMBER SYSTEM
- Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
- Compute fluently with multi-digit numbers and find common factors and multiples.
- Apply and extend previous understandings of numbers to the system of rational numbers.

EXPRESSIONS AND EQUATIONS
- Apply and extend previous understandings of arithmetic to algebraic expressions.
- Reason about and solve one-variable equations and inequalities.
- Represent and analyze quantitative relationships between dependent and independent variables.

GEOMETRY
- Solve real-world and mathematical problems involving area, surface area, and volume.

STATISTICS AND PROBABILITY
- Develop understanding of statistical problem solving.
- Summarize and describe distributions.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Grade 6

RATIOS AND PROPORTIONAL RELATIONSHIPS 6.RP
Understand ratio concepts and use ratio reasoning to solve problems.
6.RP.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.”
6.RP.2 Understand the concept of a unit rate \( \frac{a}{b} \) associated with a ratio \( a:b \) with \( b \neq 0 \), and use rate language in the context of a ratio relationship. For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is \( \frac{3}{4} \) cup of flour for each cup of sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.”
6.RP.3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams\(^6\), double number line diagrams\(^6\), or equations.
   a. Make tables of equivalent ratios relating quantities with whole number measurements; find missing values in the tables; and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
   b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
   c. Find a percent of a quantity as a rate per 100, e.g., 30% of a quantity means \( \frac{30}{100} \) times the quantity; solve problems involving finding the whole, given a part and the percent.
   d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

THE NUMBER SYSTEM 6.NS
Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
6.NS.1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models\(^6\) and equations to represent the problem. For example, create a story context for \( \frac{2}{3} \div \frac{3}{4} \) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that \( \frac{2}{3} \div \frac{3}{4} = \frac{8}{9} \) because \( \frac{3}{4} \) of \( \frac{8}{9} \) is \( \frac{2}{3} \). (In general, \( \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc} \).) How much chocolate will each person get if 3 people share \( \frac{1}{2} \) pound of chocolate equally? How many \( \frac{3}{4} \) cup servings are in \( \frac{2}{3} \) of a cup of yogurt? How wide is a rectangular strip of land with length \( \frac{3}{4} \) mi and area \( \frac{1}{2} \) square mi?

Compute fluently with multi-digit numbers and find common factors and multiples.
6.NS.2 Fluently\(^6\) divide multi-digit numbers using a standard algorithm\(^6\).
6.NS.3 Fluently add, subtract, multiply, and divide multi-digit decimals using a standard algorithm for each operation.
6.NS.4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2).
THE NUMBER SYSTEM, continued

Apply and extend previous understandings of numbers to the system of rational numbers.

6.NS.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values, e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

6.NS.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.

a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., \(-(-3) = 3\), and that 0 is its own opposite.

b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.

c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

6.NS.7 Understand ordering and absolute value of rational numbers.

a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret \(-3 > -7\) as a statement that \(-3\) is located to the right of \(-7\) on a number line oriented from left to right.

b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write \(-3°C > -7°C\) to express the fact that \(-3°C\) is warmer than \(-7°C\).

c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of \(-30\) dollars, write \(|-30| = 30\) to describe the size of the debt in dollars.

d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than \(-30\) dollars represents a debt greater than \(30\) dollars.

6.NS.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

EXPRESSIONS AND EQUATIONS

Apply and extend previous understandings of arithmetic to algebraic expressions.

6.EE.1 Write and evaluate numerical expressions involving whole number exponents.
APPLICATIONS OF ALGEBRAIC EXPRESSIONS

6.6E.2 Write, read, and evaluate expressions in which letters stand for numbers.
   - Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation “Subtract y from 5” as 5 − y.
   - Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2(8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.
   - Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, using the algebraic order of operations when there are no parentheses to specify a particular order. For example, use the formulas V = s³ and A = 6s² to find the volume and surface area of a cube with sides of length s = 1/2.

6.6E.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

6.6E.4 Identify when two expressions are equivalent, i.e., when the two expressions name the same number regardless of which value is substituted into them. For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.

Reason about and solve one-variable equations and inequalities.

6.6E.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

6.6E.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

6.6E.7 Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q, and x are all nonnegative rational numbers.

6.6E.8 Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

Represent and analyze quantitative relationships between dependent and independent variables.

6.6E.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.
GEOMETRY  6.G
Solve real-world and mathematical problems involving area, surface area, and volume.

6.G.1 Through composition into rectangles or decomposition into triangles, find the area of right triangles, other triangles, special quadrilaterals, and polygons; apply these techniques in the context of solving real-world and mathematical problems.

6.G.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas \( V = \ell \cdot w \cdot h \) and \( V = B \cdot h \) to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

6.G.3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.

6.G.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

STATISTICS AND PROBABILITY  6.SP
Develop understanding of statistical problem solving.

6.SP.1 Develop statistical reasoning by using the GAISE model:
   a. Formulate Questions: Recognize and formulate a statistical question as one that anticipates variability and can be answered with quantitative data. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because of the variability in students’ ages. (GAISE Model, step 1)
   b. Collect Data: Design and use a plan to collect appropriate data to answer a statistical question. (GAISE Model, step 2)
   c. Analyze Data: Select appropriate graphical methods and numerical measures to analyze data by displaying variability within a group, comparing individual to individual, and comparing individual to group. (GAISE Model, step 3)
   d. Interpret Results: Draw logical conclusions from the data based on the original question. (GAISE Model, step 4)

6.SP.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

6.SP.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

Summarize and describe distributions.

6.SP.4 Display numerical data in plots on a number line, including dot plots\(^5\) (line plots), histograms, and box plots\(^5\). (GAISE Model, step 3)

6.SP.5 Summarize numerical data sets in relation to their context.
   a. Report the number of observations.
   b. Describe the nature of the attribute under investigation, including how it was measured and its units of measurement.
   c. Find the quantitative measures of center (median and/or mean) for a numerical data set and recognize that this value summarizes the data set with a single number. Interpret mean as an equal or fair share. Find measures of variability (range and interquartile range\(^6\)) as well as informally describe the shape and the presence of clusters, gaps, peaks, and outliers in a distribution.
   d. Choose the measures of center and variability, based on the shape of the data distribution and the context in which the data were gathered.
Grade 7

In Grade 7, instructional time should focus on five critical areas:

**Critical Area 1: Developing understanding of and applying proportional relationships**
Students extend their understanding of ratios and develop understanding of proportionality to solve single- and multi-step problems. Students use their understanding of ratios and proportionality to solve a wide variety of percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students solve problems about scale drawings by relating corresponding lengths between the objects or by using the fact that relationships of lengths within an object are preserved in similar objects. Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line, called the slope. They distinguish proportional relationships from other relationships.

**Critical Area 2: Developing understanding of operations with rational numbers and working with expressions and linear equations**
Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts, e.g., amounts owed or temperatures below zero, students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems.

**Critical Area 3: Solving problems involving scale drawings and informal geometric constructions, angles, and working with two- and three-dimensional shapes to solve problems involving area, surface area, and volume**
Students continue their work with area from Grade 6, solving problems involving the area and circumference of a circle and surface area of three-dimensional objects. In preparation for work on congruence and similarity in Grade 8 they reason about relationships among two-dimensional figures using scale drawings and informal geometric constructions, and they gain familiarity with the relationships between angles formed by intersecting lines. Students work with three-dimensional figures, relating them to two-dimensional figures by examining cross-sections. They solve real-world and mathematical problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

**Critical Area 4: Drawing inferences about populations based on samples**
Students build on their previous work with statistical problem solving through the use of the GAISE model framework. They summarize and describe distributions representing one population and informally compare two populations. Students interpret numerical data sets using mean absolute deviation. They begin informal work with sampling to generate data sets: learn about the importance of representative samples for drawing inferences and the impact of bias.

**Critical Area 5: Investigating chance**
Students build upon previous understandings as they develop concepts of probability. They investigate relevant chance events and develop models to determine and compare probabilities. They analyze the frequencies of the experimental results against their predictions, justifying any discrepancies. Students extend their investigations with compound events representing the possible outcomes in tree diagrams, tables, lists, and ultimately through designing and using simulations.
GRADE 7 OVERVIEW

RATIOS AND PROPORTIONAL RELATIONSHIPS
- Analyze proportional relationships and use them to solve real-world and mathematical problems.

THE NUMBER SYSTEM
- Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

EXPRESSIONS AND EQUATIONS
- Use properties of operations to generate equivalent expressions.
- Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

GEOMETRY
- Draw, construct and describe geometrical figures and describe the relationships between them.
- Solve real-life and mathematical problems involving angle measure, circles, area, surface area, and volume.

STATISTICS AND PROBABILITY
- Use sampling to draw conclusions about a population.
- Broaden understanding of statistical problem solving.
- Summarize and describe distributions representing one population and draw informal comparisons between two populations.
- Investigate chance processes and develop, use, and evaluate probability models.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Grade 7

RATIOS AND PROPORTIONAL RELATIONSHIPS 7.RP
Analyze proportional relationships and use them to solve real-world and mathematical problems.

7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units. *For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction \( \frac{1/2}{1/4} \) miles per hour, equivalently 2 miles per hour.*

7.RP.2 Recognize and represent proportional relationships between quantities.
   a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
   b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
   c. Represent proportional relationships by equations. *For example, if total cost \( t \) is proportional to the number \( n \) of items purchased at a constant price \( p \), the relationship between the total cost and the number of items can be expressed as \( t = pn \).*
   d. Explain what a point \((x, y)\) on the graph of a proportional relationship means in terms of the situation, with special attention to the points \((0, 0)\) and \((1, r)\) where \( r \) is the unit rate.

7.RP.3 Use proportional relationships to solve multistep ratio and percent problems. *Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.*

THE NUMBER SYSTEM 7.NS
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
   a. Describe situations in which opposite quantities combine to make 0. *For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.*
   b. Understand \( p + q \) as the number located a distance \(|q|\) from \( p \), in the positive or negative direction depending on whether \( q \) is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
   c. Understand subtraction of rational numbers as adding the additive inverse, \( p - q = p + (-q) \). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
   d. Apply properties of operations as strategies to add and subtract rational numbers.
THE NUMBER SYSTEM, continued
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
7.NS.2 Apply and extend previous understandings of multiplication and division of fractions to multiply and divide rational numbers.
   a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as \((-1)(-1) = 1\) and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
   b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If \(p\) and \(q\) are integers, then \(-\left(\frac{p}{q}\right) = \frac{-p}{q} = \frac{p}{-q}\). Interpret quotients of rational numbers by describing real-world contexts.
   c. Apply properties of operations as strategies to multiply and divide rational numbers.
   d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

EXPRESSIONS AND EQUATIONS
7.EE
Use properties of operations to generate equivalent expressions.
7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.2 In a problem context, understand that rewriting an expression in an equivalent form can reveal and explain properties of the quantities represented by the expression and can reveal how those quantities are related. For example, a discount of 15% (represented by \(p - 0.15p\)) is equivalent to \((1 - 0.15)p\), which is equivalent to 0.85\(p\) or finding 85% of the original price.

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example, if a woman making $25 an hour gets a 10% raise, she will make an additional \(\frac{1}{10}\) of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 ¾ inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
   a. Solve word problems leading to equations of the form \(px + q = r\) and \(p(x + q) = r\), where \(p\), \(q\), and \(r\) are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
   b. Solve word problems leading to inequalities of the form \(px + q > r\) or \(px + q < r\), where \(p\), \(q\), and \(r\) are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, as a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.
GEOMETRY

7.G

Draw, construct, and describe geometrical figures and describe the relationships between them.

7.G.1 Solve problems involving similar figures with right triangles, other triangles, and special quadrilaterals.
   a. Compute actual lengths and areas from a scale drawing and reproduce a scale drawing at a different scale.
   b. Represent proportional relationships within and between similar figures.

7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric figures with given conditions.
   a. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
   b. Focus on constructing quadrilaterals with given conditions noticing types and properties of resulting quadrilaterals and whether it is possible to construct different quadrilaterals using the same conditions.

7.G.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

7.G.6 Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

STATISTICS AND PROBABILITY

7.SP

Use sampling to draw conclusions about a population.

7.SP.1 Understand that statistics can be used to gain information about a population by examining a sample of the population.
   a. Differentiate between a sample and a population.
   b. Understand that conclusions and generalizations about a population are valid only if the sample is representative of that population. Develop an informal understanding of bias.

Broaden understanding of statistical problem solving.

7.SP.2 Broaden statistical reasoning by using the GAISE model:
   a. Formulate Questions: Recognize and formulate a statistical question as one that anticipates variability and can be answered with quantitative data. For example, “How do the heights of seventh graders compare to the heights of eighth graders?” (GAISE Model, step 1)
   b. Collect Data: Design and use a plan to collect appropriate data to answer a statistical question. (GAISE Model, step 2)
   c. Analyze Data: Select appropriate graphical methods and numerical measures to analyze data by displaying variability within a group, comparing individual to individual, and comparing individual to group. (GAISE Model, step 3)
   d. Interpret Results: Draw logical conclusions and make generalizations from the data based on the original question. (GAISE Model, step 4)
STATISTICS AND PROBABILITY, continued

Summarize and describe distributions representing one population and draw informal comparisons between two populations. (continued)

7.SP.3 Describe and analyze distributions.
   a. Summarize quantitative data sets in relation to their context by using mean absolute deviation (MAD), interpreting mean as a balance point.
   b. Informally assess the degree of visual overlap of two numerical data distributions with roughly equal variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

7.SP.4 [Deleted standard]

Investigate chance processes and develop, use, and evaluate probability models.

7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event; a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely; and a probability near 1 indicates a likely event.

7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
   a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
   b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulations.
   a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
   b. Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams. For an event described in everyday language, e.g., “rolling double sixes,” identify the outcomes in the sample space which compose the event.
   c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?
Grade 8

In Grade 8, instructional time should focus on four critical areas:

**Critical Area 1: Formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations**

Students use linear equations and systems of linear equations to represent, analyze, and solve a variety of problems. Students recognize equations for proportions ($\frac{y}{x} = m$ or $y = mx$) as special linear equations ($y = mx + b$), understanding that the constant of proportionality ($m$) is the slope, and the graphs are lines through the origin. They understand that the slope ($m$) of a line is a constant rate of change so that if the input or $x$-coordinate changes by an amount $A$, the output or $y$-coordinate changes by the amount $m \cdot A$. Students also use a linear equation to describe the association between two quantities in bivariate data (such as arm span vs. height for students in a classroom). At this grade, fitting the model, and assessing its fit to the data are done informally. Interpreting the model in the context of the data requires students to express a relationship between the two quantities in question and to interpret components of the relationship (such as slope and $y$-intercept) in terms of the situation.

Students strategically choose and efficiently implement procedures to solve linear equations in one variable, understanding that when they use the properties of equality and the concept of logical equivalence, they maintain the solutions of the original equation. Students solve systems of two linear equations in two variables graphically or by simple inspection; these intersect, are parallel, or are the same line. Students use linear equations, systems of linear equations, linear functions, and their understanding of slope of a line to analyze situations and solve problems.

**Critical Area 2: Grasping the concept of a function and using functions to describe quantitative relationships**

Students grasp the concept of a function as a rule that assigns to each input exactly one output. They understand that functions describe situations where one quantity determines another. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial representations), and they describe how aspects of the function are reflected in the different representations.

**Critical Area 3: Analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem**

Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and dilations, and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line, and that various configurations of lines give rise to similar triangles because of the angles created when a transversal cuts parallel lines. Students understand the statement of the Pythagorean Theorem and its converse, and can explain why the Pythagorean Theorem holds, for example, by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons. Students complete their work on volume by solving problems involving cones, cylinders, and spheres.

**Critical Area 4: Working with irrational numbers, integer exponents, and scientific notation**

Students explore irrational numbers and their approximations. They extend work with expressions and equations with integer exponents, square and cube roots. Understandings of very large and very small numbers, the place value system, and exponents are combined in representations and computations with scientific notation.
GRADE 8 OVERVIEW

THE NUMBER SYSTEM
- Know that there are numbers that are not rational, and approximate them by rational numbers.

EXPRESSIONS AND EQUATIONS
- Work with radicals and integer exponents.
- Understand the connections between proportional relationships, lines, and linear equations.
- Analyze and solve linear equations and pairs of simultaneous linear equations.

FUNCTIONS
- Define, evaluate, and compare functions.
- Use functions to model relationships between quantities.

GEOMETRY
- Understand congruence and similarity using physical models, transparencies, or geometry software.
- Understand and apply the Pythagorean Theorem.
- Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

STATISTICS AND PROBABILITY
- Investigate patterns of association in bivariate data.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Grade 8

THE NUMBER SYSTEM 8.NS

Know that there are numbers that are not rational, and approximate them by rational numbers.

8.NS.1 Know that real numbers are either rational or irrational. Understand informally that every number has a decimal expansion which is repeating, terminating, or is non-repeating and non-terminating.

8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions, e.g., \( \pi^2 \). For example, by truncating the decimal expansion of \( \sqrt{2} \), show that \( \sqrt{2} \) is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

EXPRESSIONS AND EQUATIONS 8.EE

Work with radicals and integer exponents.

8.EE.1 Understand, explain, and apply the properties of integer exponents to generate equivalent numerical expressions. For example, \( 3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27 \).  

8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form \( x^2 = p \) and \( x^3 = p \), where \( p \) is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that \( \sqrt{2} \) is irrational.

8.EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities and to express how many times as much one is than the other. For example, estimate the population of the United States as \( 3 \times 10^8 \); and the population of the world as \( 7 \times 10^9 \); and determine that the world population is more than 20 times larger.

8.EE.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal notation and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities, e.g., use millimeters per year for seafloor spreading. Interpret scientific notation that has been generated by technology.

Understand the connections between proportional relationships, lines, and linear equations.

8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

8.EE.6 Use similar triangles to explain why the slope \( m \) is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation \( y = mx \) for a line through the origin and the equation \( y = mx + b \) for a line intercepting the vertical axis at \( b \).

Analyze and solve linear equations and pairs of simultaneous linear equations.

8.EE.7 Solve linear equations in one variable.

a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form \( x = a \), \( a = a \), or \( a = b \) results (where \( a \) and \( b \) are different numbers).

b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
EXPRESSIONS AND EQUATIONS, continued
Analyze and solve linear equations and pairs of simultaneous linear equations. (continued)
8.EE.8 Analyze and solve pairs of simultaneous linear equations graphically.
   a. Understand that the solution to a pair of linear equations in two variables corresponds to the point(s) of intersection of their graphs, because the point(s) of intersection satisfy both equations simultaneously.
   b. Use graphs to find or estimate the solution to a pair of two simultaneous linear equations in two variables. Equations should include all three solution types: one solution, no solution, and infinitely many solutions. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.
   c. Solve real-world and mathematical problems leading to pairs of linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair. (Limit solutions to those that can be addressed by graphing.)

FUNCTIONS 8.F
Define, evaluate, and compare functions.
8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. Function notation is not required in Grade 8.
8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1)$, $(2,4)$ and $(3,9)$, which are not on a straight line.

Use functions to model relationships between quantities.
8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two $(x, y)$ values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph, e.g., where the function is increasing or decreasing, linear or nonlinear. Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

GEOMETRY 8.G
Understand congruence and similarity using physical models, transparencies, or geometry software.
8.G.1 Verify experimentally the properties of rotations, reflections, and translations (include examples both with and without coordinates).
   a. Lines are taken to lines, and line segments are taken to line segments of the same length.
   b. Angles are taken to angles of the same measure.
   c. Parallel lines are taken to parallel lines.
GEOMETRY, continued
Understand congruence and similarity using physical models, transparencies, or geometry software. (continued)
8.G.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Include examples both with and without coordinates.)
8.G.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Include examples both with and without coordinates.)
8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

Understand and apply the Pythagorean Theorem.
8.G.6 Analyze and justify an informal proof of the Pythagorean Theorem and its converse.
8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
8.G.9 Solve real-world and mathematical problems involving volumes of cones, cylinders, and spheres.

STATISTICS AND PROBABILITY 8.SP
Investigate patterns of association in bivariate data.
8.SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering; outliers; positive, negative, or no association; and linear association and nonlinear association. (GAISE Model, steps 3 and 4)
8.SP.2 Understand that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. (GAISE Model, steps 3 and 4)
8.SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. (GAISE Model, steps 3 and 4)
8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Mathematical Content Standards for High School

**PROCESS**
The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+), as in this example:

\[ (+) \text{ Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers).} \]

All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students. Standards with a (+) symbol may also appear in courses intended for all students. However, standards with a (+) symbol will not appear on Ohio’s State Tests.

The high school standards are listed in conceptual categories:
- Modeling
- Number and Quantity
- Algebra
- Functions
- Geometry
- Statistics and Probability

Conceptual categories portray a coherent view of high school mathematics; a student’s work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus.

Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★).

Proofs in high school mathematics should not be limited to geometry. Mathematically proficient high school students employ multiple proof methods, including algebraic derivations, proofs using coordinates, and proofs based on geometric transformations, including symmetries. These proofs are supported by the use of diagrams and dynamic software and are written in multiple formats including not just two-column proofs but also proofs in paragraph form, including mathematical symbols. In statistics, rather than using mathematical proofs, arguments are made based on empirical evidence within a properly designed statistical investigation.
How to Read the High School Content Standards

Conceptual Categories are areas of mathematics that cross through various course boundaries.

Standards define what students should understand and be able to do.

Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.

Domains are larger groups of related standards. Standards from different domains may sometimes be closely related.

G shows there is a definition in the glossary for this term.

(★) indicates that modeling should be incorporated into the standard. (See the Conceptual Category of Modeling pages 60-61)

(+) indicates that it is a standard for students who are planning on taking advanced courses. Standards with a (+) sign will not appear on Ohio’s State Tests.

Some standards have course designations such as (A1, M1) or (A2, M3) listed after an a., b., or c. These designations help teachers know where to focus their instruction within the standard. In the example below the beginning section of the standard is the stem. The stem shows what the teacher should be doing for all courses. (Notice in the example below that modeling (★) should also be incorporated.)

Looking at the course designations, an Algebra 1 teacher should be focusing his or her instruction on a. which focuses on linear functions; b. which focuses on quadratic functions; and e. which focuses on simple exponential functions. An Algebra 1 teacher can ignore c., d., and f, as the focuses of these types of functions will come in later courses. However, a teacher may choose to touch on these types of functions to extend a topic if he or she wishes.
HOW TO READ THE HIGH SCHOOL CONTENT STANDARDS
continued

Notice that in the standard below, the stem has a course designation. This shows that the full extent of the stem is intended for an Algebra 2 or Math 3 course. However, a. shows that Algebra 1 and Math 2 students are responsible for a modified version of the stem that focuses on transformations of quadratics functions and excludes the \( f(kx) \) transformation. However, again a teacher may choose to touch on different types of functions besides quadratics to extend a topic if he or she wishes.
High School—Modeling

Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as well as creativity.

Some examples of such situations might include the following:

- Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it might be distributed.
- Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other player.
- Designing the layout of the stalls in a school fair so as to raise as much money as possible.
- Analyzing stopping distance for a car.
- Modeling savings account balance, bacterial colony growth, or investment growth.
- Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport.
- Analyzing risk in situations such as extreme sports, pandemics, and terrorism.
- Relating population statistics to individual predictions.

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, control, or optimize? What resources of time and tools do we have? The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, spreadsheets and other technology, and algebra are powerful tools for understanding and solving problems drawn from different types of real-world situations.
High School—Modeling, continued

One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure can sometimes model seemingly different situations. Models can also shed light on the mathematical structures themselves, for example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential function.

The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important tool for analyzing such problems.

Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be used to model purely mathematical phenomena, e.g., the behavior of polynomials as well as physical phenomena.

MODELING STANDARDS

Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★).
High School—Number and Quantity

NUMBERS AND NUMBER SYSTEMS
During the years from kindergarten to eighth grade, students must repeatedly extend their conception of number. At first, “number” means “counting number”: 1, 2, 3... Soon after that, 0 is used to represent “none” and the whole numbers are formed by the counting numbers together with zero. The next extension is fractions. At first, fractions are barely numbers and tied strongly to pictorial representations. Yet by the time students understand division of fractions, they have a strong concept of fractions as numbers and have connected them, via their decimal representations, with the base-ten system used to represent the whole numbers. During middle school, fractions are augmented by negative fractions to form the rational numbers. In Grade 8, students extend this system once more, augmenting the rational numbers with the irrational numbers to form the real numbers. In high school, students will be exposed to yet another extension of number, when the real numbers are augmented by the imaginary numbers to form the complex numbers.

With each extension of number, the meanings of addition, subtraction, multiplication, and division are extended. In each new number system—integers, rational numbers, real numbers, and complex numbers—the four operations stay the same in two important ways: They have the commutative, associative, and distributive properties and their new meanings are consistent with their previous meanings.

Extending the properties of whole number exponents leads to new and productive notation. For example, properties of whole number exponents suggest that \((5^{1/3})^3\) should be \(5^{(1/3) \cdot 3} = 5^1 = 5\) and that \(5^{1/3}\) should be the cube root of 5.

Calculators, spreadsheets, and computer algebra systems can provide ways for students to become better acquainted with these new number systems and their notation. They can be used to generate data for numerical experiments, to help understand the workings of matrix, vector, and complex number algebra, and to experiment with non-integer exponents.

QUANTITIES
In real-world problems, the answers are usually not numbers but quantities: numbers with units, which involves measurement. In their work in measurement up through Grade 8, students primarily measure commonly used attributes such as length, area, and volume. In high school, students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as personhours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored per game or batting averages. They also encounter novel situations in which they themselves must conceive the attributes of interest. For example, to find a good measure of overall highway safety, they might propose measures such as fatalities per year, fatalities per year per driver, or fatalities per vehicle-mile traveled. Such a conceptual process is sometimes called quantification. Quantification is important for science, as when surface area suddenly “stands out” as an important variable in evaporation. Quantification is also important for companies, which must conceptualize relevant attributes and create or choose suitable measures for them.
NUMBER AND QUANTITY OVERVIEW

THE REAL NUMBER SYSTEM
- Extend the properties of exponents to rational exponents.
- Use properties of rational and irrational numbers.

QUANTITIES
- Reason quantitatively and use units to solve problems.

THE COMPLEX NUMBER SYSTEM
- Perform arithmetic operations with complex numbers.
- Represent complex numbers and their operations on the complex plane.
- Use complex numbers in polynomial identities and equations.

VECTOR AND MATRIX QUANTITIES
- Represent and model with vector quantities.
- Perform operations on vectors.
- Perform operations on matrices, and use matrices in applications.

MATHEMATICAL PRACTICES

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Number and Quantity Standards

THE REAL NUMBER SYSTEM

N.RN Extend the properties of exponents to rational exponents.

N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.

N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and irrational numbers.

N.RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

QUANTITIES

N.Q Reason quantitatively and use units to solve problems.

N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. ★

N.Q.2 Define appropriate quantities for the purpose of descriptive modeling.★

N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.★

THE COMPLEX NUMBER SYSTEM

N.CN Perform arithmetic operations with complex numbers.

N.CN.1 Know there is a complex number $i$ such that $i^2 = -1$, and every complex number has the form $a + bi$ with $a$ and $b$ real.

N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. (+) N.CN.3 Find the conjugate of a complex number; use conjugates to find magnitudes and quotients of complex numbers.

Represent complex numbers and their operations on the complex plane.

(+) N.CN.4 Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.

(+) N.CN.5 Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(−1 + i\sqrt{3})^2 = 8$ because $(−1 + i\sqrt{3})$ has magnitude 2 and argument 120°.

(+) N.CN.6 Calculate the distance between numbers in the complex plane as the magnitude of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.

Use complex numbers in polynomial identities and equations.

N.CN.7 Solve quadratic equations with real coefficients that have complex solutions.

(+) N.CN.8 Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.

(+) N.CN.9 Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
VECTOR AND MATRIX QUANTITIES  

Represent and model with vector quantities.

(+) N.VM.1 Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes, e.g., \( \mathbf{v}, |\mathbf{v}|, ||\mathbf{v}||, \mathbf{v} \).

(+) N.VM.2 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

(+) N.VM.3 Solve problems involving velocity and other quantities that can be represented by vectors.

Perform operations on vectors.

(+) N.VM.4 Add and subtract vectors.

a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.

b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

c. Understand vector subtraction \( \mathbf{v} - \mathbf{w} \) as \( \mathbf{v} + (-\mathbf{w}) \), where \( -\mathbf{w} \) is the additive inverse of \( \mathbf{w} \), with the same magnitude as \( \mathbf{w} \) and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.

(+) N.VM.5 Multiply a vector by a scalar.

a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as \( c (v_x, v_y) = (cv_x, cv_y) \).

b. Compute the magnitude of a scalar multiple \( c \mathbf{v} \) using \( ||c\mathbf{v}|| = |c| \mathbf{v} \). Compute the direction of \( c \mathbf{v} \) knowing that when \( |c| \mathbf{v} \neq 0 \), the direction of \( c \mathbf{v} \) is either along \( \mathbf{v} \) (for \( c > 0 \)) or against \( \mathbf{v} \) (for \( c < 0 \)).

Perform operations on matrices, and use matrices in applications.

(+) N.VM.6 Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.

(+) N.VM.7 Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.

(+) N.VM.8 Add, subtract, and multiply matrices of appropriate dimensions.

(+) N.VM.9 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.

(+) N.VM.10 Understand that the zero and identity matrices play a role in matrix addition and multiplication analogous to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.

(+) N.VM.11 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.

(+) N.VM.12 Work with \( 2 \times 2 \) matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.
**High School—Algebra**

**Expressions**
An expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires the ability to express the computation in general terms, abstracting from specific instances.

Reading an expression with comprehension involves analysis of its underlying structure. This may suggest a different but equivalent way of writing the expression that exhibits some different aspect of its meaning. For example, $p + 0.05p$ can be interpreted as the addition of a 5% tax to a price $p$. Rewriting $p + 0.05p$ as $1.05p$ shows that adding a tax is the same as multiplying the price by a constant factor.

Algebraic manipulations are governed by the properties of operations and exponents, and the conventions of algebraic notation. At times, an expression is the result of applying operations to simpler expressions. For example, $p + 0.05p$ is the sum of the simpler expressions $p$ and $0.05p$. Viewing an expression as the result of operation on simpler expressions can sometimes clarify its underlying structure.

A spreadsheet or a computer algebra system (CAS) can be used to experiment with algebraic expressions, perform complicated algebraic manipulations, and understand how algebraic manipulations behave.

**Equations and Inequalities**
An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values of the variables; identities are often developed by rewriting an expression in an equivalent form.

The solutions of an equation in one variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy every equation and inequality in the system.

An equation can often be solved by successively deducing from it one or more simpler equations. For example, one can add the same constant to both sides without changing the solutions, but squaring both sides might lead to extraneous solutions. Strategic competence in solving includes looking ahead for productive manipulations and anticipating the nature and number of solutions.

Some equations have no solutions in a given number system, but have a solution in a larger system. For example, the solution of $x + 1 = 0$ is an integer, not a whole number; the solution of $2x + 1 = 0$ is a rational number, not an integer; the solutions of $x^2 - 2 = 0$ are real numbers, not rational numbers; and the solutions of $x^2 + 2 = 0$ are complex numbers, not real numbers.
High School—Algebra, continued

The same solution techniques used to solve equations can be used to rearrange formulas. For example, the formula for the area of a trapezoid, \( A = \left(\frac{b_1+b_2}{2}\right)h \), can be solved for \( h \) using the same deductive process.

Inequalities can be solved by reasoning about the properties of inequality. Many, but not all, of the properties of equality continue to hold for inequalities and can be useful in solving them.

CONNECTIONS WITH FUNCTIONS AND MODELING

Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation. Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.
ALGEBRA OVERVIEW

SEEING STRUCTURE IN EXPRESSIONS
- Interpret the structure of expressions.
- Write expressions in equivalent forms to solve problems.

ARITHMETIC WITH POLYNOMIALS AND RATIONAL EXPRESSIONS
- Perform arithmetic operations on polynomials.
- Understand the relationship between zeros and factors of polynomials.
- Use polynomial identities to solve problems.
- Rewrite rational expressions.

CREATING EQUATIONS
- Create equations that describe numbers or relationships.

REASONING WITH EQUATIONS AND INEQUALITIES
- Understand solving equations as a process of reasoning and explain the reasoning.
- Solve equations and inequalities in one variable.
- Solve systems of equations.
- Represent and solve equations and inequalities graphically.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Algebra Standards

SEEING STRUCTURE IN EXPRESSIONS A.SSE

Interpret the structure of expressions.
A.SSE.1 Interpret expressions that represent a quantity in terms of its context. ★
   a. Interpret parts of an expression, such as terms, factors, and coefficients.
   b. Interpret complicated expressions by viewing one or more of their parts as a single entity.
A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, to factor $3x(x - 5) + 2(x - 5)$, students should recognize that the "$x - 5$" is common to both expressions being added, so it simplifies to $(3x + 2)(x - 5)$; or see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.

Write expressions in equivalent forms to solve problems.
A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. ★
   a. Factor a quadratic expression to reveal the zeros of the function it defines. (A1, M2)
   b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. (A1, M2)
   c. Use the properties of exponents to transform expressions for exponential functions. For example, $8^t$ can be written as $2^{3t}$.
   (+) A.SSE.4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. ★

ARITHMETIC WITH POLYNOMIALS AND RATIONAL EXPRESSIONS A.APR

Perform arithmetic operations on polynomials.
A.APR.1 Understand that polynomials form a system analogous to the integers, namely, that they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
   a. Focus on polynomial expressions that simplify to forms that are linear or quadratic. (A1, M2)
   b. Extend to polynomial expressions beyond those expressions that simplify to forms that are linear or quadratic. (A2, M3)

Understand the relationship between zeros and factors of polynomials.
A.APR.2 Understand and apply the Remainder Theorem: For a polynomial $p(x)$ and a number $a$, the remainder on division by $x - a$ is $p(a)$. In particular, $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.
A.APR.3 Identify zeros of polynomials, when factoring is reasonable, and use the zeros to construct a rough graph of the function defined by the polynomial.

Use polynomial identities to solve problems.
A.APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.
   (+) A.APR.5 Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of $x$ and $y$ for a positive integer $n$, where $x$ and $y$ are any numbers. For example by using coefficients determined for by Pascal’s Triangle. The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
ARITHMETIC WITH POLYNOMIALS AND RATIONAL EXPRESSIONS, continued

Rewrite rational expressions.

A.APR.6 Rewrite simple rational expressions\(^\text{G}\) in different forms; write \(\frac{a(x)}{b(x)}\) in the form \(q(x) + \frac{r(x)}{b(x)}\), where \(a(x), b(x), q(x),\) and \(r(x)\) are polynomials with the degree of \(r(x)\) less than the degree of \(b(x)\), using inspection, long division, or, for the more complicated examples, a computer algebra system.

(+) A.APR.7 Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

CREATING EQUATIONS

A.CED

Create equations that describe numbers or relationships.

A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations and inequalities arising from linear, quadratic, simple rational, and exponential functions. ★

a. Focus on applying linear and simple exponential expressions. (A1, M1)

b. Focus on applying simple quadratic expressions. (A1, M2)

c. Extend to include more complicated function situations with the option to solve with technology. (A2, M3)

A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.★

a. Focus on applying linear and simple exponential expressions. (A1, M1)

b. Focus on applying simple quadratic expressions. (A1, M2)

c. Extend to include more complicated function situations with the option to graph with technology. (A2, M3)

A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.★ (A1, M1)

a. While functions will often be linear, exponential, or quadratic, the types of problems should draw from more complicated situations. (A2, M3)

A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.★

a. Focus on formulas in which the variable of interest is linear or square. For example, rearrange Ohm’s law \(V = IR\) to highlight resistance \(R\), or rearrange the formula for the area of a circle \(A = \pi r^2\) to highlight radius \(r\). (A1)

b. Focus on formulas in which the variable of interest is linear. For example, rearrange Ohm’s law \(V = IR\) to highlight resistance \(R\). (M1)

c. Focus on formulas in which the variable of interest is linear or square. For example, rearrange the formula for the area of a circle \(A = \pi r^2\) to highlight radius \(r\). (M2)

d. While functions will often be linear, exponential, or quadratic, the types of problems should draw from more complicated situations. (A2, M3)
REASONING WITH EQUATIONS AND INEQUALITIES  A.REI
Understand solving equations as a process of reasoning and explain the reasoning.
A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Solve equations and inequalities in one variable.
A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
A.REI.4 Solve quadratic equations in one variable.
  a. Use the method of completing the square to transform any quadratic equation in \( x \) into an equation of the form \((x - p)^2 = q\) that has the same solutions.
  b. Solve quadratic equations as appropriate to the initial form of the equation by inspection, e.g., for \( x^2 = 49 \); taking square roots; completing the square; applying the quadratic formula; or utilizing the Zero-Product Property after factoring.
(+) c. Derive the quadratic formula using the method of completing the square.

Solve systems of equations.
A.REI.5 Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
A.REI.6 Solve systems of linear equations algebraically and graphically.
  a. Limit to pairs of linear equations in two variables. (A1, M1)
  b. Extend to include solving systems of linear equations in three variables, but only algebraically. (A2, M3)

A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line \( y = -3x \) and the circle \( x^2 + y^2 = 3 \).
(+) A.REI.8 Represent a system of linear equations as a single matrix equation in a vector variable.
(+) A.REI.9 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension \( 3 \times 3 \) or greater).

Represent and solve equations and inequalities graphically.
A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A.REI.11 Explain why the x-coordinates of the points where the graphs of the equation \( y = f(x) \) and \( y = g(x) \) intersect are the solutions of the equation \( f(x) = g(x) \); find the solutions approximately, e.g., using technology to graph the functions, making tables of values, or finding successive approximations.
A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
High School—Functions

Functions describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies between quantities in nature and society, functions are important tools in the construction of mathematical models.

In school mathematics, functions usually have numerical inputs and outputs and are often defined by an algebraic expression. For example, the time in hours it takes for a car to drive 100 miles is a function of the car’s speed in miles per hour, \( v \); the rule \( T(v) = \frac{100}{v} \) expresses this relationship algebraically and defines a function whose name is \( T \).

The set of inputs to a function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for which the function makes sense in a given context.

A function can be described in various ways, such as by a graph, e.g., the trace of a seismograph; by a verbal rule, as in, “I'll give you a state, you give me the capital city;” by an algebraic expression like \( f(x) = a + bx \); or by a recursive rule. The graph of a function is often a useful way of visualizing the relationship of the function models, and manipulating a mathematical expression for a function can throw light on the function’s properties.

Functions presented as expressions can model many important phenomena. Two important families of functions characterized by laws of growth are linear functions, which grow at a constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe proportional relationships.

A graphing utility or a computer algebra system can be used to experiment with properties of these functions and their graphs and to build computational models of functions, including recursively defined functions.

**CONNECTIONS TO EXPRESSIONS, EQUATIONS, MODELING, AND COORDINATES.**

Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or other technology.
FUNCTIONS OVERVIEW

INTERPRETING FUNCTIONS
- Understand the concept of a function, and use function notation.
- Interpret functions that arise in applications in terms of the context.
- Analyze functions using different representations.

BUILDING FUNCTIONS
- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.

LINEAR, QUADRATIC, AND EXPONENTIAL MODELS
- Construct and compare linear, quadratic, and exponential models, and solve problems.
- Interpret expressions for functions in terms of the situation they model.

TRIGONOMETRIC FUNCTIONS
- Extend the domain of trigonometric functions using the unit circle.
- Model periodic phenomena with trigonometric functions.
- Prove and apply trigonometric identities.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Functions Standards

INTERPRETING FUNCTIONS

F.IF. Understand the concept of a function, and use function notation.

F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \( f \) is a function and \( x \) is an element of its domain, then \( f(x) \) denotes the output of \( f \) corresponding to the input \( x \). The graph of \( f \) is the graph of the equation \( y = f(x) \).

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \( f(0) = f(1) = 1 \), \( f(n + 1) = f(n) + f(n - 1) \) for \( n \geq 1 \).

Interpret functions that arise in applications in terms of the context.

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include the following: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★ (A2, M3)

a. Focus on linear and exponential functions. (M1)
b. Focus on linear, quadratic, and exponential functions. (A1, M2)
c. Emphasize the selection of a type of function for a model based on behavior of data and context. (A2, M3)

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \( h(n) \) gives the number of person-hours it takes to assemble \( n \) engines in a factory, then the positive integers would be an appropriate domain for the function.★

a. Focus on linear and exponential functions. (M1)
b. Focus on linear, quadratic, and exponential functions. (A1, M2)
c. Emphasize the selection of a type of function for a model based on behavior of data and context. (A2, M3)

F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★ (A2, M3)

Analyze functions using different representations.

F.IF.7 Graph functions expressed symbolically and indicate key features of the graph, by hand in simple cases and using technology for more complicated cases. Include applications and how key features relate to characteristics of a situation, making selection of a particular type of function model appropriate.★

a. Graph linear functions and indicate intercepts. (A1, M1)
b. Graph quadratic functions and indicate intercepts, maxima, and minima. (A1, M2)
c. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. (A2, M3)
d. Graph polynomial functions, identifying zeros, when factoring is reasonable, and indicating end behavior. (A2, M3)
e. Graph simple exponential functions, indicating intercepts and end behavior. (A2, M3)
f. Graph exponential functions, indicating intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. (A2, M3)

(+) g. Graph rational functions, identifying zeros and asymptotes when factoring is reasonable, and indicating end behavior. (A2, M3)

(+) h. Graph logarithmic functions, indicating intercepts and end behavior.
INTERPRETING FUNCTIONS, continued

Analyze functions using different representations. (continued)

F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. (A2, M3)
   i. Focus on completing the square to quadratic functions with the leading coefficient of 1. (A1, M2)

b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, and $y = (0.97)^t$ and classify them as representing exponential growth or decay. (A2, M3)
   i. Focus on exponential functions evaluated at integer inputs. (A1, M2)

F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. (A2, M3)

a. Focus on linear and exponential functions. (M1)

b. Focus on linear, quadratic, and exponential functions. (A1, M2)

BUILDING FUNCTIONS

F.BF

Build a function that models a relationship between two quantities.

F.BF.1 Write a function that describes a relationship between two quantities.★

a. Determine an explicit expression, a recursive process, or steps for calculation from context.
   i. Focus on linear and exponential functions. (A1, M1)

ii. Focus on situations that exhibit quadratic or exponential relationships. (A1, M2)

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. (A2, M3)

(+ c. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.

F.BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.★

Build new functions from existing functions.

F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. (A2, M3)

a. Focus on transformations of graphs of quadratic functions, except for $f(kx)$; (A1, M2)
BUILDING FUNCTIONS, continued
Build new functions from existing functions. (continued)
F.BF.4 Find inverse functions.
   a. Informally determine the input of a function when the output
      is known. (A1, M1)
(+) b. Read values of an inverse function from a graph or a table, given
      that the function has an inverse. (A2, M3)
(+) c. Verify by composition that one function is the inverse of another.
      (A2, M3)
(+) d. Find the inverse of a function algebraically, given that the
      function has an inverse. (A2, M3)
(+) e. Produce an invertible function from a non-invertible function by
      restricting the domain.
(+) F.BF.5 Understand the inverse relationship between exponents and
      logarithms and use this relationship to solve problems involving
      logarithms and exponents.

LINEAR, QUADRATIC, AND EXPONENTIAL MODELS  F.LE
Construct and compare linear, quadratic, and exponential models, and solve problems.
F.LE.1 Distinguish between situations that can be modeled with linear
functions and with exponential functions.★
   a. Show that linear functions grow by equal differences over equal
      intervals and that exponential functions grow by equal factors
      over equal intervals.
   b. Recognize situations in which one quantity changes at a
      constant rate per unit interval relative to another.
   c. Recognize situations in which a quantity grows or decays by a
      constant percent rate per unit interval relative to another.
F.LE.2 Construct linear and exponential functions, including arithmetic
and geometric sequences, given a graph, a description of a
relationship, or two input-output pairs (include reading these from
a table).★

F.LE.3 Observe using graphs and tables that a quantity increasing
exponentially eventually exceeds a quantity increasing linearly
or quadratically. ★ (A1, M2)
F.LE.4 For exponential models, express as a logarithm the solution to
$ab^{ct} = d$ where $a$, $c$, and $d$ are numbers and the base $b$ is 2, 10, or $e$;
evaluate the logarithm using technology.★

Interpret expressions for functions in terms of the situation
they model.
F.LE.5 Interpret the parameters in a linear or exponential function in
terms of a context.★

TRIGONOMETRIC FUNCTIONS  F.TF
Extend the domain of trigonometric functions using the
unit circle.
F.TF.1 Understand radian measure of an angle as the length of the
arc on the unit circle subtended by the angle.
F.TF.2 Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to all real numbers, interpreted as
radian measures of angles traversed counterclockwise around the
unit circle.
(+) F.TF.3 Use special triangles to determine geometrically the values
of sine, cosine, tangent for $\pi/3$, $\pi/4$, and $\pi/6$, and use the unit circle to
express the values of sine, cosine, and tangent for $\pi - x$, $\pi + x$, and
$2\pi - x$ in terms of their values for $x$, where $x$ is any real number.
(+) F.TF.4 Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions.

Model periodic phenomena with trigonometric functions.
F.TF.5 Choose trigonometric functions to model periodic phenomena
with specified amplitude, frequency, and midline.★
TRIGONOMETRIC FUNCTIONS, continued

Model periodic phenomena with trigonometric functions.

(continued)

(+) **F.TF.6** Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.

(+) **F.TF.7** Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.★

Prove and apply trigonometric identities.

**F.TF.8** Prove the Pythagorean identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \), and use it to find \( \sin(\theta) \), \( \cos(\theta) \), or \( \tan(\theta) \) given \( \sin(\theta) \), \( \cos(\theta) \), or \( \tan(\theta) \) and the quadrant of the angle.

(+) **F.TF.9** Prove the addition and subtraction formulas for sine, cosine, and tangent, and use them to solve problems.
High School—Geometry

An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts—interpreting a schematic drawing, estimating the amount of wood needed to frame a sloping roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material.

Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized most importantly by the Parallel Postulate, that through a point not on a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.)

During high school, students begin to formalize their geometry experiences from elementary and middle school, using more precise definitions and developing careful proofs. Later in college some students develop Euclidean and other geometries carefully from a small set of axioms.

The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry, and the symmetries of an object offer insight into its attributes— as when the reflective symmetry of an isosceles triangle assures that its base angles are congruent.

In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. This is the principle of superposition. For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences drawing triangles from given conditions, students notice ways to specify enough measures in a triangle to ensure that all triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures.

Similarity transformations (rigid motions followed by dilations) define similarity in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of “same shape” and “scale factor” developed in the middle grades. These transformations lead to the criterion for triangle similarity that two pairs of corresponding angles are congruent.

The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information suffice to completely solve a triangle. Furthermore, these laws yield two possible solutions in the ambiguous case, illustrating that Side-Side-Angle is not a congruence criterion.
High School—Geometry, continued

Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric transformations of the graphs of equations correspond to algebraic changes in their equations.

Dynamic geometry environments provide students with experimental and modeling tools that allow them to investigate geometric phenomena in much the same way as computer algebra systems allow them to experiment with algebraic phenomena.

CONNECTIONS TO EQUATIONS

The correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof.
GEOMETRY OVERVIEW

CONGRUENCE
- Experiment with transformations in the plane.
- Understand congruence in terms of rigid motions.
- Prove geometric theorems both formally and informally using a variety of methods.
- Make geometric constructions.
- Classify and analyze geometric figures.

SIMILARITY, RIGHT TRIANGLES, AND TRIGONOMETRY
- Understand similarity in terms of similarity transformations.
- Prove and apply theorems involving similarity both formally and informally using a variety of methods.
- Define trigonometric ratios, and solve problems involving right triangles.
- Apply trigonometry to general triangles.

CIRCLES
- Understand and apply theorems about circles.
- Find arc lengths and areas of sectors of circles.

MODELING IN GEOMETRY
- Apply geometric concepts in modeling situations.

EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS
- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

GEOMETRIC MEASUREMENT AND DIMENSION
- Explain volume formulas, and use them to solve problems.
- Visualize relationships between two-dimensional and three-dimensional objects.
- Understand the relationships between lengths, area, and volumes.
**Geometry Standards**

**CONGRUENCE**

G.CO Experiment with transformations in the plane.

G.CO.1 Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and arc length.

G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch.

G.CO.3 Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself.
   a. Identify figures that have line symmetry; draw and use lines of symmetry to analyze properties of shapes.
   b. Identify figures that have rotational symmetry; determine the angle of rotation, and use rotational symmetry to analyze properties of shapes.

G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using items such as graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

**Prove geometric theorems both formally and informally using a variety of methods.**

G.CO.9 Prove and apply theorems about lines and angles. Theorems include but are not restricted to the following: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

G.CO.10 Prove and apply theorems about triangles. Theorems include but are not restricted to the following: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

G.CO.11 Prove and apply theorems about parallelograms. Theorems include but are not restricted to the following: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
CONGRUENCE, CONTINUED
Make geometric constructions.
G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Classify and analyze geometric figures.
G.CO.14 Classify two-dimensional figures in a hierarchy based on properties.

SIMILARITY, RIGHT TRIANGLES, AND TRIGONOMETRY G.SRT
Understand similarity in terms of similarity transformations.
G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor:
  a. A dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged.
  b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
G.SRT.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Prove and apply theorems both formally and informally involving similarity using a variety of methods.
G.SRT.4 Prove and apply theorems about triangles. Theorems include but are not restricted to the following: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to justify relationships in geometric figures that can be decomposed into triangles.

Define trigonometric ratios, and solve problems involving right triangles.
G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
G.SRT.7 Explain and use the relationship between the sine and cosine of complementary angles.
G.SRT.8 Solve problems involving right triangles.★
  a. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems if one of the two acute angles and a side length is given. (G, M2)
  (+) b. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.★ (A2, M3)

Apply trigonometry to general triangles.
(+ ) G.SRT.9 Derive the formula \( A = \frac{1}{2} ab \sin(C) \) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
(+ ) G.SRT.10 Explain proofs of the Laws of Sines and Cosines and use the Laws to solve problems.
(+ ) G.SRT.11 Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles, e.g., surveying problems, resultant forces.
CIRCLES 

Understand and apply theorems about circles.

G.C.1 Prove that all circles are similar using transformational arguments.

G.C.2 Identify and describe relationships among angles, radii, chords, tangents, and arcs and use them to solve problems. Include the relationship between central, inscribed, and circumscribed angles and their intercepted arcs; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

G.C.3 Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle.

(+ G.C.4 Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles.

G.C.5 Find arc lengths and areas of sectors of circles.

a. Apply similarity to relate the length of an arc intercepted by a central angle to the radius. Use the relationship to solve problems.

b. Derive the formula for the area of a sector, and use it to solve problems.

G.C.6 Derive formulas that relate degrees and radians, and convert between the two. (A2, M3)

EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS

G.GPE

Translate between the geometric description and the equation for a conic section.

G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

(+ G.GPE.2 Derive the equation of a parabola given a focus and directrix.

(+ G.GPE.3 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

G.GPE.4 Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships algebraically, including properties of special triangles, quadrilaterals, and circles. For example, determine if a figure defined by four given points in the coordinate plane is a rectangle; determine if a specific point lies on a given circle. (G, M2)

G.GPE.5 Justify the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems, e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point.

G.GPE.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.★
GEOMETRIC MEASUREMENT AND DIMENSION        G.GMD
Explain volume formulas, and use them to solve problems.
G.GMD.1 Give an informal argument for the formulas for the
circumference of a circle, area of a circle, and volume of a cylinder,
pyramid, and cone. Use **dissection arguments**, Cavalieri’s principle,
and **informal limit arguments**.
(+ ) G.GMD.2 Give an informal argument using Cavalieri’s principle for
the formulas for the volume of a sphere and other solid figures.
G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and
spheres to solve problems.★

Visualize relationships between two-dimensional and three-
dimensional objects.
G.GMD.4 Identify the shapes of two-dimensional cross-sections of
three-dimensional objects, and identify three-dimensional objects
generated by rotations of two-dimensional objects.

Understand the relationships between lengths, areas,
and volumes.
G.GMD.5 Understand how and when changes to the measures of a
figure (lengths or angles) result in similar and non-similar figures.
G.GMD.6 When figures are similar, understand and apply the fact that
when a figure is scaled by a factor of \( k \), the effect on lengths, areas,
and volumes is that they are multiplied by \( k \), \( k^2 \), and \( k^3 \), respectively.

MODELING WITH GEOMETRY        G.MG
Apply geometric concepts in modeling situations.
G.MG.1 Use geometric shapes, their measures, and their properties
to describe objects, e.g., modeling a tree trunk or a human torso as
a cylinder.★
G.MG.2 Apply concepts of density based on area and volume in
modeling situations, e.g., persons per square mile, BTUs per
cubic foot.★
G.MG.3 Apply geometric methods to solve design problems, e.g.,
designing an object or structure to satisfy physical constraints or
minimize cost; working with typographic grid systems based
on ratios.★
High School—Statistics and Probability

Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account.

Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken.

Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn.

Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached through the analysis of two-way tables.

Technology plays an important role in statistics and probability by making it possible to generate plots, regression functions, and correlation coefficients, and to simulate many possible outcomes in a short amount of time.

**CONNECTIONS TO FUNCTIONS AND MODELING**

Functions may be used to describe data; if the data suggest a linear relationship, the relationship can be modeled with a regression line, and its strength and direction can be expressed through a correlation coefficient.
STATISTICS AND PROBABILITY OVERVIEW

INTERPRETING CATEGORICAL AND QUANTITATIVE DATA
- Summarize, represent, and interpret data on a single count or measurement variable.
- Summarize, represent, and interpret data on two categorical and quantitative variables.
- Interpret linear models.

MAKING INFERENCES AND JUSTIFYING CONCLUSIONS
- Understand and evaluate random processes underlying statistical experiments.
- Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

CONDITIONAL PROBABILITY AND THE RULES OF PROBABILITY
- Understand independence and conditional probability, and use them to interpret data.
- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

USING PROBABILITY TO MAKE DECISIONS
- Calculate expected values, and use them to solve problems.
- Use probability to evaluate outcomes of decisions.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Statistics and Probability Standards

INTERPRETING CATEGORICAL AND QUANTITATIVE DATA

**S.ID.1** Represent data with plots on the real number line (dot plots, histograms, and box plots) in the context of real-world applications using the GAISE model.★

**S.ID.2** In the context of real-world applications by using the GAISE model, use statistics appropriate to the shape of the data distribution to compare center (median and mean) and spread (mean absolute deviation, interquartile range, and standard deviation) of two or more different data sets. ★

**S.ID.3** In the context of real-world applications by using the GAISE model, interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★

**S.ID.4** Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.★

**S.ID.5** Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.★

**S.ID.6** Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.★

a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions, or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. (A2, M3)

b. Informally assess the fit of a function by discussing residuals. (A2, M3)

c. Fit a linear function for a scatterplot that suggests a linear association. (A1, M1)

**Interpret linear models.**

**S.ID.7** Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.★

**S.ID.8** Compute (using technology) and interpret the correlation coefficient of a linear fit.★

**S.ID.9** Distinguish between correlation and causation.★

**MAKING INFERENCES AND JUSTIFYING CONCLUSIONS**

**S.IC.1** Understand statistics as a process for making inferences about population parameters based on a random sample from that population.★

**S.IC.2** Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?★
MAKING INFERENCES AND JUSTIFYING CONCLUSIONS, cont’d
Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.★

S.IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.★

S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between sample statistics are statistically significant.★

S.IC.6 Evaluate reports based on data.★

CONDITIONAL PROBABILITY AND THE RULES OF PROBABILITY  S.CP
Understand independence and conditional probability, and use them to interpret data.

S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”).★

S.CP.2 Understand that two events A and B are independent if and only if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.★

S.CP.3 Understand the conditional probability of A given B as \( P(A \text{ and } B)/P(B) \), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.★

S.CP.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.★

S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.★

Use the rules of probability to compute probabilities of compound events in a uniform probability model.

S.CP.6 Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model.★

S.CP.7 Apply the Addition Rule, \( P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \), and interpret the answer in terms of the model.★

(+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, \( P(A \text{ and } B) = P(A) \cdot P(B | A) = P(B) \cdot P(A | B) \), and interpret the answer in terms of the model.★

(+) S.CP.9 Use permutations and combinations to compute probabilities of compound events and solve problems.★
USING PROBABILITY TO MAKE DECISIONS

S.MD

Calculate expected values, and use them to solve problems.

(+) S.MD.1 Define a random variable$^G$ for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution$^G$ using the same graphical displays as for data distributions.★

(+) S.MD.2 Calculate the expected value$^G$ of a random variable; interpret it as the mean of the probability distribution.★

(+) S.MD.3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.★

(+) S.MD.4 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?★

(+) S.MD.5 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.★

a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.

b. Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.

(+) S.MD.6 Use probabilities to make fair decisions, e.g., drawing by lots, using a random number generator.★

(+) S.MD.7 Analyze decisions and strategies using probability concepts, e.g., product testing, medical testing, pulling a hockey goalie at the end of a game.★
Note on Courses and Transitions

The high school portion of the Standards for Mathematical Content specifies the mathematics all students should study for college and career readiness. These standards do not mandate the sequence of high school courses. However, the organization of high school courses is a critical component to implementation of the standards. To that end, sample high school pathways for mathematics – in both a traditional course sequence (Algebra 1, Geometry, and Algebra 2) as well as an integrated course sequence (Mathematics 1, Mathematics 2, Mathematics 3) – will be made available shortly after the release of Ohio’s Learning Standards. It is expected that additional model pathways based on these standards will become available as well.

The standards themselves do not dictate curriculum, pedagogy, or delivery of content. In particular, districts may handle the transition to high school in different ways. For example, students in some districts today take Algebra 1 in the 8th grade, The K-8 standards contain the prerequisites to prepare students for Algebra 1, and the standards are designed to permit schools to continue existing policies concerning Algebra 1 in 8th grade. Therefore, it is NOT recommended that students skip 8th Grade Mathematics. If districts wish to accelerate students, it is advisable to compact the curriculum in previous grades and not skip standards.

A second major transition is the transition from high school to post-secondary education for college and careers. The evidence concerning college and career readiness shows clearly that the knowledge, skills, and practices important for readiness include a great deal of mathematics prior to the boundary defined by (+) symbols in these standards. Indeed, some of the highest priority content for college and career readiness comes from Grades 6-8. This body of material includes powerfully useful proficiencies such as applying ratio reasoning in real-world and mathematical problems, computing fluently with positive and negative fractions and decimals, and solving real-world and mathematical problems involving angle measure, area, surface area, and volume. Because important standards for college and career readiness are distributed across grades and courses, systems for evaluating college and career readiness should reach as far back in the standards as Grades 6-8.
Glossary

Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number answers, and with sum or minuend in the range 0-5, 0-10, 0-20, or 0-100, respectively. Example: $8 + 2 = 10$ is an addition within 10, $14 - 5 = 9$ is a subtraction within 20, and $55 - 18 = 37$ is a subtraction within 100.

Additive inverses. Two numbers whose sum is 0 are additive inverses of one another. Example: $\frac{3}{4}$ and $-\frac{3}{4}$ are additive inverses of one another because $\frac{3}{4} + (-\frac{3}{4}) = (-\frac{3}{4}) + \frac{3}{4} = 0$.

Algorithm. See also: computation algorithm.

Additive inverses. Two numbers whose sum is 0 are additive inverses of one another. Example: $\frac{3}{4}$ and $-\frac{3}{4}$ are additive inverses of one another because $\frac{3}{4} + (-\frac{3}{4}) = (-\frac{3}{4}) + \frac{3}{4} = 0$.

Algorithm. See also: computation algorithm.

Associative property of addition. See Table 3, page 96.

Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team.

Box plot. A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. A box shows the middle 50% of the data.¹ See also: first quartile and third quartile.

Commutative property. See Table 3, page 96.

Complex fraction. A fraction $\frac{A}{B}$ where $A$ and/or $B$ are fractions ($B$ nonzero).

Computation algorithm. A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly. See also: computation strategy.

Computation strategy. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another. See also: computation algorithm.

Congruent. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of rotations, reflections, and translations).

Counting on. A strategy for finding the number of objects in a group without having to count every member of the group. For example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the stack all over again. One can find the total by counting on—pointing to the top book and saying “eight,” following this with “nine, ten, eleven. There are eleven books now.”

Dilation. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies distances from the center by a common scale factor.

Dot plot. See also: line plot.


Expanded form. A multi-digit number is expressed in expanded form when it is written as a sum of single-digit multiples of powers of ten. For example, $643 = 600 + 40 + 3$.

Expected value. For a random variable, the weighted average of its possible values, with weights given by their respective probabilities.

First quartile. For a data set with median $M$, the first quartile is the median of the data values less than $M$. Example: For the data set $\{1, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the first quartile is 6.2. See also: median, third quartile, interquartile range.

Fluency. The ability to use efficient, accurate, and flexible methods for computing. Fluency does not imply timed tests.

Fluently. See also: fluency.

Fraction. A number expressible in the form $\frac{a}{b}$ where $a$ is a whole number and $b$ is a positive whole number. (The word fraction in these standards always refers to a non-negative number.) See also: rational number.

Identity property of 0. See Table 3, page 96.

Independently combined probability models. Two probability models are said to be combined independently if the probability of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in the ordered pair.

Integer. A number expressible in the form $a$ or $-a$ for some whole number $a$.

Interquartile Range. A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set $\{1, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the interquartile range is $15 - 6 = 9$. See also: first quartile, third quartile.

Justify: To provide a convincing argument for the truth of a statement to a particular audience.

Line plot. A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot.$^3$

Mean. A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list. (To be more precise, this defines the arithmetic mean) Example: For the data set $\{1, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the mean is 21.

Mean absolute deviation. A measure of variation in a set of numerical data, computed by adding the distances between each data value and the mean, then dividing by the number of data values. Example: For the data set $\{2, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the mean absolute deviation is 20.
Median. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list—or the mean of the two central values, if the list contains an even number of values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 90}, the median is 11.

Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values.

Multiplication and division within 100. Multiplication or division of two whole numbers with whole number answers, and with product or dividend in the range 0-100. Example: $72 \div 8 = 9$.

Multiplicative inverses. Two numbers whose product is 1 are multiplicative inverses of one another. Example: $\frac{3}{4}$ and $\frac{4}{3}$ are multiplicative inverses of one another because $\frac{3}{4} \times \frac{4}{3} = \frac{4}{3} \times \frac{3}{4} = 1$.

Number line diagram. A diagram of the number line used to represent numbers and support reasoning about them. In a number line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity.

Percent rate of change. A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it grows by $\frac{5}{50} = 10\%$ per year.

Probability distribution. The set of possible values of a random variable with a probability assigned to each.

Properties of equality. See Table 4, page 96.

Properties of inequality. See Table 5, page 97.

Properties of operations. See Table 3, page 96.

Probability. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition).

Probability model. A probability model is used to assign probabilities to outcomes of a chance process by examining the nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1. See also: uniform probability model.

Prove: To provide a logical argument that demonstrates the truth of a statement. A proof is typically composed of a series of justifications, which are often single sentences, and may be presented informally or formally.

Random variable. An assignment of a numerical value to each outcome in a sample space.

Rational expression. A quotient of two polynomials with a nonzero denominator.
Rational number. A number expressible in the form \( \frac{a}{b} \) or \(-\frac{a}{b}\) for some fraction \( \frac{a}{b} \). The rational numbers include the integers.

Rectilinear figure. A polygon all angles of which are right angles.

Rigid motion. A transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are here assumed to preserve distances and angle measures.

Repeating decimal. The decimal form of a rational number. See also: terminating decimal.

Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered.

Scatter plot. A graph in the coordinate plane representing a set of bivariate data. For example, the heights and weights of a group of people could be displayed on a scatter plot.

Similarity transformation. A rigid motion followed by a dilation.

Standard Algorithm. See computational algorithm.

Tape diagram. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip diagram, bar model, fraction strip, or length model.

Terminating decimal. A decimal is called terminating if its repeating digit is 0.

Third quartile. For a data set with median \( M \), the third quartile is the median of the data values greater than \( M \). Example: For the data set \{2, 3, 6, 7, 10, 12, 14, 15, 22, 120\}, the third quartile is 15. See also: median, first quartile, interquartile range.

Transitivity principle for indirect measurement. If the length of object A is greater than the length of object B, and the length of object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle applies to measurement of other quantities as well.

Trapezoid. 1. A trapezoid is a quadrilateral with at least one pair of parallel sides. (inclusive definition) 2. A trapezoid is a quadrilateral with exactly one pair of parallel sides. (exclusive definition)

Districts may choose either definition to use for instruction. Ohio’s State Tests’ items will be written so that either definition will be acceptable.

Uniform probability model. A probability model which assigns equal probability to all outcomes. See also: probability model.

Vector. A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers.

Verify: To check the truth or correctness of a statement in specific cases.

Visual fraction model. A tape diagram, number line diagram, or area model.

Whole numbers. The numbers 0, 1, 2, 3, ....
Table 1. Common Addition and Subtraction Situations.

<table>
<thead>
<tr>
<th>RESULT UNKNOWN</th>
<th>CHANGE UNKNOWN</th>
<th>START UNKNOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ADD TO</strong></td>
<td>Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? 2 + 3 = ?</td>
<td>Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5</td>
</tr>
<tr>
<td><strong>TAKE FROM</strong></td>
<td>Five apples were on the table. I ate two apples. How many apples are on the table now? 5 – 2 = ?</td>
<td>Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? 5 – ? = 3</td>
</tr>
<tr>
<td><strong>TOTAL UNKNOWN</strong></td>
<td>Three red apples and two green apples are on the table. How many apples are on the table? 3 + 2 = ?</td>
<td>Five apples are on the table. Three are red and the rest are green. How many apples are green? 3 + ? = 5, 5 – 3 = ?</td>
</tr>
<tr>
<td><strong>PUT TOGETHER/TAKE APART</strong></td>
<td><strong>ADDEND UNKNOWN</strong></td>
<td><strong>BOTH ADDENDS UNKNOWN</strong></td>
</tr>
<tr>
<td><strong>DIFFERENCE UNKNOWN</strong></td>
<td>(“How many more?” version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy? (“How many fewer?” version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? 2 + ? = 5, 5 – 2 = ?</td>
<td>(Version with “more”: Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have? (Version with “fewer”: Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? 2 + 3 = ?, 3 + 2 = ? (Version with “more”: Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have? (Version with “fewer”: Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 – 3 = ?, ? + 3 = 5</td>
</tr>
</tbody>
</table>

1 These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean “makes” or “results in” but always does mean “is the same number as.”

2 Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10.

3 For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the Bigger Unknown and using less for the Smaller Unknown). The other versions are more difficult.
Table 2. Common Multiplication and Division Situations

<table>
<thead>
<tr>
<th>UNKNOW PRODUCT</th>
<th>GROUP SIZE UNKNOWN (&quot;HOW MANY IN EACH GROUP?&quot; DIVISION)</th>
<th>NUMBER OF GROUPS UNKNOWN (&quot;HOW MANY GROUPS?&quot; DIVISION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 X 6 = ?</td>
<td>3 X ? = 18, AND 18 ÷ 3 = ?</td>
<td>? X 6 = 18, AND 18 ÷ 6 = ?</td>
</tr>
</tbody>
</table>

**EQUAL GROUPS**
- There are 3 bags with 6 plums in each bag. How many plums are there in all?
  - Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?
- If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?
  - Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?
- If 18 plums are to be packed 6 to a bag, then how many bags are needed?
  - Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?

**ARRAYS², AREA³**
- There are 3 rows of apples with 6 apples in each row. How many apples are there?
  - Area example. What is the area of a 3 cm by 6 cm rectangle?
- If 18 apples are arranged into 3 equal rows, how many apples will be in each row?
  - Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?
- If 18 apples are arranged into equal rows of 6 apples, how many rows will there be?
  - Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?

**COMPARE**
- A blue hat costs $6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?
  - Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?
- A red hat costs $18 and that is 3 times as much as a blue hat costs. How much does a blue hat cost?
  - Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?
- A red hat costs $18 and a blue hat costs $6. How many times as much does the red hat cost as the blue hat?
  - Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?

**GENERAL**
- \( a \times b = ? \)
- \( a \times ? = p, \) and \( p \div a = ? \)
- \( ? \times b = p, \) and \( p \div b = ? \)

1 The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

2 The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.

3 Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.
### Table 3. Properties of Operations.

Here $a$, $b$ and $c$ stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system and the complex number system.

<table>
<thead>
<tr>
<th>Property</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ASSOCIATIVE PROPERTY OF ADDITION</strong></td>
<td>$(a + b) + c = a + (b + c)$</td>
</tr>
<tr>
<td><strong>COMMUTATIVE PROPERTY OF ADDITION</strong></td>
<td>$a + b = b + a$</td>
</tr>
<tr>
<td><strong>ADDITIVE IDENTITY PROPERTY OF 0</strong></td>
<td>$a + 0 = 0 + a = a$</td>
</tr>
<tr>
<td><strong>EXISTENCE OF ADDITIVE INVERSES</strong></td>
<td>For every $a$ there exists $-a$ so that $a + (-a) = (-a) + a = 0$</td>
</tr>
<tr>
<td><strong>ASSOCIATIVE PROPERTY OF MULTIPLICATION</strong></td>
<td>$(a \times b) \times c = a \times (b \times c)$</td>
</tr>
<tr>
<td><strong>COMMUTATIVE PROPERTY OF MULTIPLICATION</strong></td>
<td>$a \times b = b \times a$</td>
</tr>
<tr>
<td><strong>MULTIPLICATIVE IDENTITY PROPERTY OF 1</strong></td>
<td>$a \times 1 = 1 \times a = a$</td>
</tr>
<tr>
<td><strong>EXISTENCE OF MULTIPLICATIVE INVERSES</strong></td>
<td>For every $a \neq 0$ there exists $\frac{1}{a}$ so that $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$</td>
</tr>
<tr>
<td><strong>DISTRIBUTIVE PROPERTY OF MULTIPLICATION OVER ADDITION</strong></td>
<td>$a \times (b + c) = a \times b + a \times c$</td>
</tr>
</tbody>
</table>

### Table 4. Properties of Equality.

Here $a$, $b$ and $c$ stand for arbitrary numbers in the rational, real or complex number systems.

<table>
<thead>
<tr>
<th>Property</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>REFLEXIVE PROPERTY OF EQUALITY</strong></td>
<td>$a = a$</td>
</tr>
<tr>
<td><strong>SYMMETRIC PROPERTY OF EQUALITY</strong></td>
<td>If $a = b$, then $b = a$.</td>
</tr>
<tr>
<td><strong>TRANSITIVE PROPERTY OF EQUALITY</strong></td>
<td>If $a = b$ and $b = c$, then $a = c$.</td>
</tr>
<tr>
<td><strong>ADDITION PROPERTY OF EQUALITY</strong></td>
<td>If $a = b$, then $a + c = b + c$.</td>
</tr>
<tr>
<td><strong>SUBTRACTION PROPERTY OF EQUALITY</strong></td>
<td>If $a = b$, then $a - c = b - c$.</td>
</tr>
<tr>
<td><strong>MULTIPLICATION PROPERTY OF EQUALITY</strong></td>
<td>If $a = b$, then $a \times c = b \times c$.</td>
</tr>
<tr>
<td><strong>DIVISION PROPERTY OF EQUALITY</strong></td>
<td>If $a = b$ and $c \neq 0$, then $a \div c = b \div c$.</td>
</tr>
<tr>
<td><strong>SUBSTITUTION PROPERTY OF EQUALITY</strong></td>
<td>If $a = a$, then $b$ may be substituted for $a$ in any expression containing $a$.</td>
</tr>
</tbody>
</table>
Table 5. Properties of Inequality.

Here $a$, $b$ and $c$ stand for arbitrary numbers in the rational or real number systems.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exactly one of the following is true: $a &lt; b$, $a = b$, $a &gt; b$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$ and $b &gt; c$, then $a &gt; c$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$, then $b &lt; a$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$, then $-a &lt; -b$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$, then $a \pm c &gt; b \pm c$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$ and $c &gt; 0$, then $a \times c &gt; b \times c$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$ and $c &lt; 0$, then $a \times c &lt; b \times c$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$ and $c &gt; 0$, then $a \div c &gt; b \div c$.</td>
<td></td>
</tr>
<tr>
<td>If $a &gt; b$ and $c &lt; 0$, then $a \div c &lt; b \div c$.</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

ADVISORY COMMITTEE MEMBERS
Aaron Altose
The Ohio Mathematics Association of Two-Year Colleges

Jeremy Beardmore
Ohio Educational Service Center Association

Jessica Burchett
Ohio Teachers of English to Speakers of Other Languages

Jeanne Cerniglia
Ohio Education Association

Margie Coleman
Cochair

Jason Feldner
Ohio Association for Career and Technical Education

Brad Findell
Ohio Higher Education

Gregory D. Foley
Ohio Mathematics and Science Coalition

Margaret (Peggy) Kasten
Cochair

Courtney Koestler
Ohio Mathematics Education Leadership Council

Scott Mitter
Ohio Math and Science Supervisors

Tabatha Nadolny
Ohio Federation of Teachers

Eydie Schilling
Ohio Association for Supervision and Curriculum Development

Kim Yoak
Ohio Council of Teachers of Mathematics
### WORKING GROUP MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darry Andrews</td>
<td>Higher Education, Ohio State University, C</td>
</tr>
<tr>
<td>Bridgette Beeler</td>
<td>Teacher, Perrysburg Exempted Local, NW</td>
</tr>
<tr>
<td>Melissa Bennett</td>
<td>Teacher, Minford Local, SE</td>
</tr>
<tr>
<td>Dawn Bittner</td>
<td>Teacher, Cincinnati Public Schools, SW</td>
</tr>
<tr>
<td>Katherine Bunsey</td>
<td>Teacher, Lakewood City, NE</td>
</tr>
<tr>
<td>Hoyun Cho</td>
<td>Higher Education, Capital University, C</td>
</tr>
<tr>
<td>Viki Cooper</td>
<td>Curriculum Specialist/Coordinator, Pickerington Local, C</td>
</tr>
<tr>
<td>Ali Fleming</td>
<td>Teacher, Bexley City, C</td>
</tr>
<tr>
<td>Linda Gillum</td>
<td>Teacher, Springboro City Schools, SW</td>
</tr>
<tr>
<td>Gary Herman</td>
<td>Curriculum Specialist/Coordinator, Putnam County ESC, NW</td>
</tr>
<tr>
<td>William Husen</td>
<td>Higher Education, Ohio State University, C</td>
</tr>
<tr>
<td>Kristen Kelly</td>
<td>Curriculum Specialist/Coordinator, Cleveland Metropolitan School District, NE</td>
</tr>
<tr>
<td>Endora Kight Neal</td>
<td>Curriculum Specialist/Coordinator, Cleveland Metropolitan School District, NE</td>
</tr>
<tr>
<td>Julie Kujawa</td>
<td>Teacher, Oregon City, NW</td>
</tr>
<tr>
<td>Sharilyn Leonard</td>
<td>Teacher, Oak Hill Union Local Schools, SE</td>
</tr>
<tr>
<td>Michael Lipnos</td>
<td>Curriculum Specialist/Coordinator, Aurora City, NE</td>
</tr>
<tr>
<td>Dawn Machacek</td>
<td>Teacher, Toledo Public Schools, NW</td>
</tr>
<tr>
<td>Janet McGuire</td>
<td>Teacher, Gallia County Schools, SE</td>
</tr>
<tr>
<td>Jill Madonia</td>
<td>Curriculum Specialist/Coordinator, Akron Public Schools, NE</td>
</tr>
<tr>
<td>Cindy McKinstrey</td>
<td>Teacher, East Palestine City, NE</td>
</tr>
<tr>
<td>Cindy Miller</td>
<td>Curriculum Specialist/Coordinator, Maysville Local, SE</td>
</tr>
<tr>
<td>Anita O’Mellan</td>
<td>Higher Education, Youngstown State University, NE</td>
</tr>
<tr>
<td>Sherryl Proctor</td>
<td>Teacher, Vantage Career Center, NW</td>
</tr>
<tr>
<td>Diane Reisdorf</td>
<td>Teacher, Westlake City, NE</td>
</tr>
<tr>
<td>Susan Rice</td>
<td>Teacher, Mount Vernon City, C</td>
</tr>
<tr>
<td>Tess Rivero</td>
<td>Teacher, Bellbrook-Sugarcreek Schools, SW</td>
</tr>
<tr>
<td>Benjamin Shaw</td>
<td>Curriculum Specialist/Coordinator, Mahoning County ESC, NE</td>
</tr>
<tr>
<td>Julia Shew</td>
<td>Higher Education, Columbus State Community College, C</td>
</tr>
<tr>
<td>Tiffany Sibert</td>
<td>Teacher, Lima Shawnee Local, NW</td>
</tr>
<tr>
<td>Jennifer Statzer</td>
<td>Principal, Greenville City, SW</td>
</tr>
<tr>
<td>Karma Vince</td>
<td>Teacher, Sylvania City, NW</td>
</tr>
<tr>
<td>Jennifer Walls</td>
<td>Teacher, Akron Public Schools, NE</td>
</tr>
<tr>
<td>Gaynell Wamer</td>
<td>Teacher, Toledo City, NW</td>
</tr>
<tr>
<td>Victoria Warner</td>
<td>Teacher, Greenville City, SW</td>
</tr>
<tr>
<td>Mary Webb</td>
<td>Teacher, North College Hill, SW</td>
</tr>
<tr>
<td>Barb Weidus</td>
<td>Curriculum Specialist/Coordinator, New Richmond Exempted Village, SW</td>
</tr>
<tr>
<td>Sandra Wilder</td>
<td>Teacher, Akron Public Schools, NE</td>
</tr>
<tr>
<td>Tong Yu</td>
<td>Teacher, Cincinnati Public Schools, SW</td>
</tr>
</tbody>
</table>