Table of Contents

Table of Contents ... 2

Introduction .. 3

Standards for Mathematical Practice .. 4

How to Read the Grade Level Standards .. 6

 Grade 5 .. 7

Glossary .. 13

Table 1. Common Addition and Subtraction Situations. 17

Table 2. Common Multiplication and Division Situations1 18

Table 3. Properties of Operations. ... 19

Acknowledgements .. 20
Introduction

PROCESS
To better prepare students for college and careers, educators used public comments along with their professional expertise and experience to revise Ohio’s Learning Standards. In spring 2016, the public gave feedback on the standards through an online survey. Advisory committee members, representing various Ohio education associations, reviewed all survey feedback and identified needed changes to the standards. Then they sent their directives to working groups of educators who proposed the actual revisions to the standards. The Ohio Department of Education sent their revisions back out for public comment in July 2016. Once again, the Advisory Committee reviewed the public comments and directed the Working Group to make further revisions. Upon finishing their work, the department presented the revisions to the Senate and House education committees as well as the State Board of Education.

UNDERSTANDING MATHEMATICS
These standards define what students should understand and be able to do in their study of mathematics. Asking a student to understand something means asking a teacher to assess whether the student has understood it. But what does mathematical understanding look like? One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student’s mathematical maturity, why a particular mathematical statement is true, or where a mathematical rule comes from. There is a world of difference between a student who can summon a mnemonic device to expand a product such as \((a + b)(x + y)\) and a student who can explain where the mnemonic device comes from. The student who can explain the rule understands the mathematics at a much deeper level. Then the student may have a better chance to succeed at a less familiar task such as expanding \((a + b + c)(x + y)\). Mathematical understanding and procedural skill are equally important, and both are assessable using mathematical tasks of sufficient richness.

The content standards are grade-specific. However, they do not define the intervention methods or materials necessary to support students who are well below or well above grade-level expectations. It is also beyond the scope of the standards to define the full range of supports appropriate for English language learners and for students with special needs. At the same time, all students must have the opportunity to learn and meet the same high standards if they are to access the knowledge and skills necessary in their post-school lives. Educators should read the standards allowing for the widest possible range of students to participate fully from the outset. They should provide appropriate accommodations to ensure maximum participation of students with special education needs. For example, schools should allow students with disabilities in reading to use Braille, screen reader technology or other assistive devices. Those with disabilities in writing should have scribes, computers, or speech-to-text technology. In a similar vein, educators should interpret the speaking and listening standards broadly to include sign language. No set of grade-specific standards can fully reflect the great variety in abilities, needs, learning rates, and achievement levels of students in any given classroom. However, the standards do provide clear signposts along the way to help all students achieve the goal of college and career readiness.

The standards begin on page 4 with the eight Standards for Mathematical Practice.
Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council’s report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently, and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy).

1. Make sense of problems and persevere in solving them.
Students solve problems by applying their understanding of operations with whole numbers, decimals, and fractions including mixed numbers. They solve problems related to volume and measurement conversions. Students seek the meaning of a problem and look for efficient ways to represent and solve it. For example, Sonia had 2 \(\frac{1}{3} \) candy bars. She promised her brother that she would give him \(\frac{1}{2} \) of a candy bar. How much will she have left after she gives her brother the amount she promised? They may check their thinking by asking themselves, “What is the most efficient way to solve the problem?”, “Does this make sense?”, and “Can I solve the problem in a different way?”.

2. Reason abstractly and quantitatively.
Fifth graders should recognize that a number represents a specific quantity. They connect quantities to written symbols and create a logical representation of the problem at hand, considering both the appropriate units involved and the meaning of quantities. They extend this understanding from whole numbers to their work with fractions and decimals. Students write simple expressions that record calculations with numbers and represent or round numbers using place value concepts. For example, students use abstract and quantitative thinking to recognize that \(0.5 \times (300 \div 15) \) is \(\frac{1}{2} \) of \((300 \div 15) \) without calculating the quotient.

3. Construct viable arguments and critique the reasoning of others.
In fifth grade, students may construct arguments using concrete referents, such as objects, pictures, and drawings. They explain calculations based upon models and properties of operations and rules that generate patterns. They demonstrate and explain the relationship between volume and multiplication. They refine their mathematical communication skills as they participate in mathematical discussions involving questions like “How did you get that?” and “Why is that true?” They explain their thinking to others and respond to others’ thinking. Students use various strategies to solve problems and they defend and justify their work with others. For example, two afterschool clubs are having pizza parties. The teacher will order 3 pizzas for every 5 students in the math club; and 5 pizzas for every 8 students in the student council. If a student is in both groups, decide which party he/she should attend. How much pizza will each student get at each party? If a student wants to have the most pizza, which party should he/she attend?

4. Model with mathematics.
Students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, making a chart, list, or graph, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. Fifth graders should evaluate their results in the context of the situation and whether the results make sense. They also evaluate the utility of models to determine which models are most useful and efficient to solve problems.
Standards for Mathematical Practice, continued

5. Use appropriate tools strategically.
Fifth graders consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, they may use unit cubes to fill a rectangular prism and then use a ruler to measure the dimensions. They use graph paper to accurately create graphs and solve problems or make predictions from real-world data.

6. Attend to precision.
Students continue to refine their mathematical communication skills by using clear and precise language in their discussions with others and in their own reasoning. Students use appropriate terminology when referring to expressions, fractions, geometric figures, and coordinate grids. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, when figuring out the volume of a rectangular prism they record their answers in cubic units.

7. Look for and make use of structure.
In fifth grade, students look closely to discover a pattern or structure. For instance, students use properties of operations as strategies to add, subtract, multiply and divide with whole numbers, fractions, and decimals. They examine numerical patterns and relate them to a rule or a graphical representation.

8. Look for and express regularity in repeated reasoning.
Fifth graders use repeated reasoning to understand algorithms and make generalizations about patterns. Students connect place value and their prior work with operations to understand algorithms to fluently multiply multi-digit numbers and perform all operations with decimals to hundredths. Students explore operations with fractions with visual models and begin to formulate generalizations.

CONNECTING THE STANDARDS FOR MATHEMATICAL PRACTICE TO THE STANDARDS FOR MATHEMATICAL CONTENT
The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction.

The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word “understand” are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices. In this respect, those content standards which set an expectation of understanding are potential “points of intersection” between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics.
How to Read the Grade Level Standards

Standards define what students should understand and be able to do.

Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.

Domains are larger groups of related standards. Standards from different domains may sometimes be closely related.

G shows there is a definition in the glossary for this term.

These standards do not dictate curriculum or teaching methods. For example, just because topic A appears before topic B in the standards for a given grade, does not necessarily mean that teachers must teach topic A before topic B. A teacher might prefer to teach topic B before topic A, or might choose to highlight connections by teaching topic A and topic B at the same time. Or, a teacher might prefer to teach a topic of his or her own choosing that leads, as a byproduct, to students reaching the standards for topics A and B.

What students can learn at any particular grade level depends upon what they have learned before. Ideally then, each standard in this document might have been phrased in the form, “Students who already know ... should next come to learn” But at present this approach is unrealistic—not least because existing education research cannot specify all such learning pathways. Therefore, educators, researchers, and mathematicians used their collective experience and professional judgment along with state and international comparisons as a basis to make grade placements for specific topics.
Grade 5

In Grade 5, instructional time should focus on five critical areas:

Critical Area 1: Developing fluency with addition and subtraction of fractions and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions)

Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. They apply their understanding of fractions to solve real-world problems. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.)

Critical Area 2: Extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations

Students develop understanding of why division procedures work based on the meaning of base-ten numerals and properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately.

Critical Area 3: Developing understanding of volume

Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real-world and mathematical problems.

Critical Area 4: Modeling numerical relationships with the coordinate plane

Based on previous work with measurement and number lines, students develop understanding of the coordinate plane as a tool to model numerical relationships. These initial understandings provide the foundation for work with negative numbers, and ratios and proportional relationships in Grade Six and functional relationships in further grades.

Critical Area 5: Classifying two-dimensional figures by properties

Students build on their understanding of angle measures and parallel and perpendicular lines to explore the properties of triangles and quadrilaterals. They develop a foundation for classifying triangles or quadrilaterals by comparing the commonalities and differences of triangles or between types of quadrilaterals.
GRADE 5 OVERVIEW

OPERATIONS AND ALGEBRAIC THINKING
- Write and interpret numerical expressions.
- Analyze patterns and relationships.

NUMBER AND OPERATIONS IN BASE TEN
- Understand the place value system.
- Perform operations with multi-digit whole numbers and with decimals to hundredths.

NUMBER AND OPERATIONS—FRACTIONS
- Use equivalent fractions as a strategy to add and subtract fractions. (Fractions need not be simplified).
- Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (Fractions need not be simplified).

MEASUREMENT AND DATA
- Convert like measurement units within a given measurement system.
- Represent and interpret data.
- Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

MATHEMATICAL PRACTICES
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

GEOMETRY
- Graph points on the coordinate plane to solve real-world and mathematical problems.
- Classify two-dimensional figures into categories based on their properties.
Grade 5

OPERATIONS AND ALGEBRAIC THINKING

5.OA
Write and interpret numerical expressions.

5.OA.1 Use parentheses in numerical expressions, and evaluate expressions with this symbol. Formal use of algebraic order of operations is not necessary.

5.OA.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18,932 + 921)$ is three times as large as $18,932 + 921$, without having to calculate the indicated sum or product.

Analyze patterns and relationships.

5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

NUMBER AND OPERATIONS IN BASE TEN

5.NBT
Understand the place value system.

5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $\frac{1}{10}$ of what it represents in the place to its left.

5.NBT.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole number exponents to denote powers of 10.

5.NBT.3 Read, write, and compare decimals to thousandths.
 a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (\frac{1}{10}) + 9 \times (\frac{1}{100}) + 2 \times (\frac{1}{1000})$.
 b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons.

5.NBT.4 Use place value understanding to round decimals to any place, millions through hundredths.

Perform operations with multi-digit whole numbers and with decimals to hundredths.

5.NBT.5 Fluently multiply multi-digit whole numbers using a standard algorithm.

5.NBT.6 Find whole number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
NUMBER AND OPERATIONS IN BASE TEN, continued
Perform operations with multi-digit whole numbers and with decimals to hundredths. (continued)
5.NBT.7 Solve real-world problems by adding, subtracting, multiplying, and dividing decimals using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction, or multiplication and division; relate the strategy to a written method and explain the reasoning used.
 a. Add and subtract decimals, including decimals with whole numbers, (whole numbers through the hundreds place and decimals through the hundredths place).
 b. Multiply whole numbers by decimals (whole numbers through the hundreds place and decimals through the hundredths place).
 c. Divide whole numbers by decimals and decimals by whole numbers (whole numbers through the tens place and decimals less than one through the hundredths place using numbers whose division can be readily modeled). For example, 0.75 divided by 5, 18 divided by 0.6, or 0.9 divided by 3.

NUMBER AND OPERATIONS—FRACTIONS 5.NF
Use equivalent fractions as a strategy to add and subtract fractions. (Fractions need not be simplified).
5.NF.1 Add and subtract fractions with unlike denominators (including mixed numbers and fractions greater than 1) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, use visual models and properties of operations to show \(\frac{2}{3} + \frac{5}{4} = \frac{8}{12} + \frac{15}{12} = \frac{23}{12} \).
 In general, \(\frac{a}{b} + \frac{c}{d} = (\frac{a}{b} x \frac{d}{d}) + (\frac{c}{d} x \frac{b}{b}) = \frac{(ad + bc)}{bd} \).
5.NF.2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result \(\frac{2}{5} + \frac{1}{2} = \frac{3}{7} \), by observing that \(\frac{3}{7} < \frac{1}{2} \).

Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (Fractions need not be simplified).
5.NF.3 Interpret a fraction as division of the numerator by the denominator (\(\frac{a}{b} = a \div b \)). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret \(\frac{3}{4} \) as the result of dividing 3 by 4, noting that \(\frac{3}{4} \) multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size \(\frac{3}{4} \). If 9 people want to share a 50 pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
NUMBER AND OPERATIONS—FRACTIONS, continued

Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (Fractions need not be simplified). (continued)

5.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. (continued)

a. Interpret the product \((\frac{a}{b}) \times q\) as a parts of a partition of \(q\) into \(b\) equal parts, equivalently, as the result of a sequence of operations \(a \times q + b\). For example, use a visual fraction model to show \((\frac{2}{3}) \times 4 = \frac{8}{3}\), and create a story context for this equation. Do the same with \((\frac{2}{3}) \times (\frac{4}{5}) = \frac{8}{15}\). (In general, \((\frac{a}{b}) \times (\frac{c}{d}) = \frac{ac}{bd}\).)

b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.5 Interpret multiplication as scaling (resizing).

a. Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.

b. Explain why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence \(\frac{a}{b} = \frac{(mx)}{(my)}\) to the effect of multiplying \(\frac{a}{b}\) by 1.

5.NF.6 Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

5.NF.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. In general, students able to multiply fractions can develop strategies to divide fractions, by reasoning about the relationship between multiplication and division, but division of a fraction by a fraction is not a requirement at this grade.

a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for \((\frac{1}{3}) ÷ 4\), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that \((\frac{1}{3}) ÷ 4 = \frac{1}{12}\) because \((\frac{1}{12}) \times 4 = (\frac{1}{3})\).

b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for \(4 ÷ (\frac{1}{5})\), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that \(4 ÷ (\frac{1}{5}) = 20\) because \(20 \times (\frac{1}{5}) = 4\).

c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share \(\frac{1}{2}\) pound of chocolate equally? How many \(\frac{1}{3}\) cup servings are in 2 cups of raisins?

MEASUREMENT AND DATA

Convert like measurement units within a given measurement system.

5.MD.1 Know relative sizes of these U.S. customary measurement units: pounds, ounces, miles, yards, feet, inches, gallons, quarts, pints, cups, fluid ounces, hours, minutes, and seconds. Convert between pounds and ounces; miles and feet; yards, feet, and inches; gallons, quarts, pints, cups, and fluid ounces; hours, minutes, and seconds in solving multi-step, real-world problems.
MEASUREMENT AND DATA, continued

Represent and interpret data.

5.MD.2 Display and interpret data in graphs (picture graphs, bar graphs, and line plots) to solve problems using numbers and operations for this grade, e.g., including U.S. customary units in fractions \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\), or decimals.

Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

5.MD.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.

a. A cube with side length 1 unit, called a “unit cube,” is said to have “one cubic unit” of volume, and can be used to measure volume.

b. A solid figure which can be packed without gaps or overlaps using \(n\) unit cubes is said to have a volume of \(n\) cubic units.

5.MD.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

5.MD.5 Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.

a. Find the volume of a right rectangular prism with whole number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole number products as volumes, e.g., to represent the Associative Property of Multiplication.

b. Apply the formulas \(V = l \times w \times h\) and \(V = B \times h\) for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real-world and mathematical problems.

c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

GEOMETRY

5.G

Graph points on the coordinate plane to solve real-world and mathematical problems.

5.G.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond, e.g., \(x\)-axis and \(x\)-coordinate, \(y\)-axis and \(y\)-coordinate.

5.G.2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Classify two-dimensional figures into categories based on their properties.

5.G.3 Identify and describe commonalities and differences between types of triangles based on angle measures (equiangular, right, acute, and obtuse triangles) and side lengths (isosceles, equilateral, and scalene triangles).

5.G.4 Identify and describe commonalities and differences between types of quadrilaterals based on angle measures, side lengths, and the presence or absence of parallel and perpendicular lines, e.g., squares, rectangles, parallelograms, trapezoids, and rhombuses.
Glossary

Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number answers, and with sum or minuend in the range 0-5, 0-10, 0-20, or 0-100, respectively. Example: $8 + 2 = 10$ is an addition within 10, $14 - 5 = 9$ is a subtraction within 20, and $55 - 18 = 37$ is a subtraction within 100.

Additive inverses. Two numbers whose sum is 0 are additive inverses of one another. Example: $\frac{3}{4}$ and $-\frac{3}{4}$ are additive inverses of one another because $\frac{3}{4} + (-\frac{3}{4}) = (-\frac{3}{4}) + \frac{3}{4} = 0$.

Algorithm. See also: computation algorithm.

Associative property of addition. See Table 3, page 19.

Associative property of multiplication. See Table 3, page 19.

Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team.

Box plot. A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. A box shows the middle 50% of the data.¹ See also: first quartile and third quartile.

Commutative property. See Table 3, page 19.

Complex fraction. A fraction $\frac{A}{B}$ where A and/or B are fractions (B nonzero).

Computation algorithm. A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly. See also: computation strategy.

Computation strategy. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another. See also: computation algorithm.

Congruent. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of rotations, reflections, and translations).

Counting on. A strategy for finding the number of objects in a group without having to count every member of the group. For example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the stack all over again. One can find the total by counting on—pointing to the top book and saying “eight,” following this with “nine, ten, eleven. There are eleven books now.”

Dilation. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies distances from the center by a common scale factor.

Dot plot. See also: line plot.
Expanded form. A multi-digit number is expressed in expanded form when it is written as a sum of single-digit multiples of powers of ten. For example, \(643 = 600 + 40 + 3\).

Expected value. For a random variable, the weighted average of its possible values, with weights given by their respective probabilities.

First quartile. For a data set with median \(M\), the first quartile is the median of the data values less than \(M\). Example: For the data set \({1, 3, 6, 7, 10, 12, 14, 15, 22, 120}\), the first quartile is 6.2 See also: median, third quartile, interquartile range.

Fluency. The ability to use efficient, accurate, and flexible methods for computing. Fluency does not imply timed tests.

Fluently. See also: fluency.

Fraction. A number expressible in the form \(\frac{a}{b}\) where \(a\) is a whole number and \(b\) is a positive whole number. (The word fraction in these standards always refers to a non-negative number.) See also: rational number.

Identity property of 0. See Table 3, page 19.

Independently combined probability models. Two probability models are said to be combined independently if the probability of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in the ordered pair.

Integer. A number expressible in the form \(a\) or \(−a\) for some whole number \(a\).

Interquartile Range. A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set \({1, 3, 6, 7, 10, 12, 14, 15, 22, 120}\), the interquartile range is \(15 \sim 6 = 9\). See also: first quartile, third quartile.

Justify: To provide a convincing argument for the truth of a statement to a particular audience.

Line plot. A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot.³

Mean. A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list. (To be more precise, this defines the arithmetic mean) Example: For the data set \({1, 3, 6, 7, 10, 12, 14, 15, 22, 120}\), the mean is 21.

Mean absolute deviation. A measure of variation in a set of numerical data, computed by adding the distances between each data value and the mean, then dividing by the number of data values. Example: For the data set \({2, 3, 6, 7, 10, 12, 14, 15, 22, 120}\), the mean absolute deviation is 20.
Median. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list—or the mean of the two central values, if the list contains an even number of values. Example: For the data set \(\{2, 3, 6, 7, 10, 12, 14, 15, 22, 90\}\), the median is 11.

Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values.

Multiplication and division within 100. Multiplication or division of two whole numbers with whole number answers, and with product or dividend in the range 0-100. Example: \(72 \div 8 = 9\).

Multiplicative inverses. Two numbers whose product is 1 are multiplicative inverses of one another. Example: \(\frac{3}{4}\) and \(\frac{4}{3}\) are multiplicative inverses of one another because \(\frac{3}{4} \times \frac{4}{3} = \frac{4}{3} \times \frac{3}{4} = 1\).

Number line diagram. A diagram of the number line used to represent numbers and support reasoning about them. In a number line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity.

Percent rate of change. A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it grows by \(\frac{5}{50} = 10\%\) per year.

Probability distribution. The set of possible values of a random variable with a probability assigned to each.

Properties of equality. See Table 4, page 96.

Properties of inequality. See Table 5, page 97.

Properties of operations. See Table 3, page 19.

Probability. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition).

Probability model. A probability model is used to assign probabilities to outcomes of a chance process by examining the nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1. See also: uniform probability model.

Prove: To provide a logical argument that demonstrates the truth of a statement. A proof is typically composed of a series of justifications, which are often single sentences, and may be presented informally or formally.

Random variable. An assignment of a numerical value to each outcome in a sample space.

Rational expression. A quotient of two polynomials with a nonzero denominator.
Rational number. A number expressible in the form $\frac{a}{b}$ or $-\frac{a}{b}$ for some fraction $\frac{a}{b}$. The rational numbers include the integers.

Rectilinear figure. A polygon all angles of which are right angles.

Rigid motion. A transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are here assumed to preserve distances and angle measures.

Repeating decimal. The decimal form of a rational number. See also: terminating decimal.

Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered.

Scatter plot. A graph in the coordinate plane representing a set of bivariate data. For example, the heights and weights of a group of people could be displayed on a scatter plot.\(^5\)

Similarity transformation. A rigid motion followed by a dilation.

Standard Algorithm. See computational algorithm.

Tape diagram. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip diagram, bar model, fraction strip, or length model.

Repeating decimal. A decimal is called terminating if its repeating digit is 0.

Third quartile. For a data set with median M, the third quartile is the median of the data values greater than M. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the third quartile is 15. See also: median, first quartile, interquartile range.

Transitivity principle for indirect measurement. If the length of object A is greater than the length of object B, and the length of object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle applies to measurement of other quantities as well.

Trapezoid. 1. A trapezoid is a quadrilateral with at least one pair of parallel sides. (inclusive definition) 2. A trapezoid is a quadrilateral with exactly one pair of parallel sides. (exclusive definition) Districts may choose either definition to use for instruction. Ohio’s State Tests’ items will be written so that either definition will be acceptable.

Uniform probability model. A probability model which assigns equal probability to all outcomes. See also: probability model.

Vector. A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers.

Verify: To check the truth or correctness of a statement in specific cases.

Visual fraction model. A tape diagram, number line diagram, or area model.

Whole numbers. The numbers 0, 1, 2, 3, ...
Table 1. Common Addition and Subtraction Situations.

<table>
<thead>
<tr>
<th>RESULT UNKNOWN</th>
<th>CHANGE UNKNOWN</th>
<th>START UNKNOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now?</td>
<td>Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two?</td>
<td>Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before?</td>
</tr>
<tr>
<td>2 + 3 = ?</td>
<td>2 + ? = 5</td>
<td>? + 3 = 5</td>
</tr>
</tbody>
</table>

| **TAKE FROM** | | |
| Five apples were on the table. I ate two apples. How many apples are on the table now? | Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? | Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? |

<table>
<thead>
<tr>
<th>TOTAL UNKNOWN</th>
<th>ADDITION UNKNOWN</th>
<th>BOTH ADDENDS UNKNOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three red apples and two green apples are on the table. How many apples are on the table?</td>
<td>Five apples are on the table. Three are red and the rest are green. How many apples are green?</td>
<td>Grandma has five flowers. How many can she put in her red vase and how many in her blue vase?</td>
</tr>
<tr>
<td>3 + 2 = ?</td>
<td>3 + ? = 5, 5 – 3 = ?</td>
<td>5 = 0 + 5, 5 = 5 + 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPARE</th>
<th>BIGGER UNKNOWN</th>
<th>SMALLER UNKNOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy? ("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie?</td>
<td>(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have? (Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have?</td>
<td>(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have? (Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have?</td>
</tr>
</tbody>
</table>

Key: Extends across Grades 3-5 to include grade level appropriate numbers

1. These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean “makes” or “results in” but always does mean “is the same number as.”

2. Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10.

3. For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the Bigger Unknown and using less for the Smaller Unknown). The other versions are more difficult.
Table 2. Common Multiplication and Division Situations

<table>
<thead>
<tr>
<th></th>
<th>UNKNOWN PRODUCT</th>
<th>GROUP SIZE UNKNOWN ("HOW MANY IN EACH GROUP?" DIVISION)</th>
<th>NUMBER OF GROUPS UNKNOWN ("HOW MANY GROUPS?" DIVISION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUAL GROUPS</td>
<td>3 X 6 = ?</td>
<td>3 X ? = 18, AND 18 ÷ 3 = ?</td>
<td>? X 6 = 18, AND 18 ÷ 6 = ?</td>
</tr>
<tr>
<td>Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?</td>
<td>If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?</td>
<td>If 18 plums are to be packed 6 to a bag, then how many bags are needed?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>There are 3 bags with 6 plums in each bag. How many plums are there in all?</td>
<td>Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?</td>
<td>Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?</td>
</tr>
<tr>
<td>ARRAYS(^2), AREA(^3)</td>
<td>There are 3 rows of apples with 6 apples in each row. How many apples are there?</td>
<td>If 18 apples are arranged into 3 equal rows, how many apples will be in each row?</td>
<td>If 18 apples are arranged into equal rows of 6 apples, how many rows will there be?</td>
</tr>
<tr>
<td></td>
<td>Area example. What is the area of a 3 cm by 6 cm rectangle?</td>
<td>Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?</td>
<td>Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?</td>
</tr>
<tr>
<td>COMPARE</td>
<td>A blue hat costs $6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?</td>
<td>A red hat costs $18 and that is 3 times as much as a blue hat costs. How much does a blue hat cost?</td>
<td>A red hat costs $18 and a blue hat costs $6. How many times as much does the red hat cost as the blue hat?</td>
</tr>
<tr>
<td></td>
<td>Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?</td>
<td>Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?</td>
<td>Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?</td>
</tr>
<tr>
<td>GENERAL</td>
<td>(a \times b = ?)</td>
<td>(a \times ? = p, \text{ and } p ÷ a = ?)</td>
<td>(? \times b = p, \text{ and } p ÷ b = ?)</td>
</tr>
</tbody>
</table>

Key:
- Grades 3 (introduce), 4-5 (extend)
- Grades Grades 4 (introduce), 5 (extend)

1. The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

2. The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.

3. Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.
Table 3. Properties of Operations.

Here a, b and c stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system and the complex number system.

<table>
<thead>
<tr>
<th>Property</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associative Property of Addition</td>
<td>$(a + b) + c = a + (b + c)$</td>
</tr>
<tr>
<td>Commutative Property of Addition</td>
<td>$a + b = b + a$</td>
</tr>
<tr>
<td>Additive Identity Property of 0</td>
<td>$a + 0 = 0 + a = a$</td>
</tr>
<tr>
<td>Existence of Additive Inverses</td>
<td>For ever a there exists $-a$ so that $a + (-a) = (-a) + a = 0$</td>
</tr>
<tr>
<td>Associative Property of Multiplication</td>
<td>$(a \times b) \times c = a \times (b \times c)$</td>
</tr>
<tr>
<td>Commutative Property of Multiplication</td>
<td>$a \times b = b \times a$</td>
</tr>
<tr>
<td>Multiplicative Identity Property of 1</td>
<td>$a \times 1 = 1 \times a = a$</td>
</tr>
<tr>
<td>Existence of Multiplicative Inverses</td>
<td>For every $a \neq 0$ there exists $\frac{1}{a}$ so that $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$</td>
</tr>
<tr>
<td>Distributive Property of Multiplication Over Addition</td>
<td>$a \times (b + c) = a \times b + a \times c$</td>
</tr>
</tbody>
</table>

Acknowledgements

ADVISORY COMMITTEE MEMBERS

Aaron Altose
The Ohio Mathematics Association of Two-Year Colleges

Jeremy Beardmore
Ohio Educational Service Center Association

Jessica Burchett
Ohio Teachers of English to Speakers of Other Languages

Jeanne Cerniglia
Ohio Education Association

Margie Coleman
Cochair

Jason Feldner
Ohio Association for Career and Technical Education

Brad Findell
Ohio Higher Education

Gregory D. Foley
Ohio Mathematics and Science Coalition

Margaret (Peggy) Kasten
Cochair

Courtney Koestler
Ohio Mathematics Education Leadership Council

Scott Mitter
Ohio Math and Science Supervisors

Tabatha Nadolny
Ohio Federation of Teachers

Eydie Schilling
Ohio Association for Supervision and Curriculum Development

Kim Yoak
Ohio Council of Teachers of Mathematics
WORKING GROUP MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>School/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darry Andrews</td>
<td>Higher Education, Ohio State University</td>
<td>C</td>
</tr>
<tr>
<td>Bridgette Beeler</td>
<td>Teacher, Perrysburg Exempted Local</td>
<td>NW</td>
</tr>
<tr>
<td>Melissa Bennett</td>
<td>Teacher, Minford Local</td>
<td>SE</td>
</tr>
<tr>
<td>Dawn Bittner</td>
<td>Teacher, Cincinnati Public Schools</td>
<td>SW</td>
</tr>
<tr>
<td>Katherine Bunsey</td>
<td>Teacher, Lakewood City</td>
<td>NE</td>
</tr>
<tr>
<td>Hoyun Cho</td>
<td>Higher Education, Capital University</td>
<td>C</td>
</tr>
<tr>
<td>Viki Cooper</td>
<td>Curriculum Specialist/Coordinator, Pickerington Local</td>
<td>C</td>
</tr>
<tr>
<td>Ali Fleming</td>
<td>Teacher, Bexley City</td>
<td>C</td>
</tr>
<tr>
<td>Linda Gillum</td>
<td>Teacher, Springboro City Schools</td>
<td>SW</td>
</tr>
<tr>
<td>Gary Herman</td>
<td>Curriculum Specialist/Coordinator, Putnam County ESC</td>
<td>NW</td>
</tr>
<tr>
<td>William Husen</td>
<td>Higher Education, Ohio State University</td>
<td>C</td>
</tr>
<tr>
<td>Kristen Kelly</td>
<td>Curriculum Specialist/Coordinator, Cleveland Metropolitan School District</td>
<td>NE</td>
</tr>
<tr>
<td>Endora Kight Neal</td>
<td>Curriculum Specialist/Coordinator, Cleveland Metropolitan School District</td>
<td>NE</td>
</tr>
<tr>
<td>Julie Kujawa</td>
<td>Teacher, Oregon City</td>
<td>NW</td>
</tr>
<tr>
<td>Sharilyn Leonard</td>
<td>Teacher, Oak Hill Union Local Schools</td>
<td>SE</td>
</tr>
<tr>
<td>Michael Lipnos</td>
<td>Curriculum Specialist/Coordinator, Aurora City</td>
<td>NE</td>
</tr>
<tr>
<td>Dawn Machacek</td>
<td>Teacher, Toledo Public Schools</td>
<td>NW</td>
</tr>
<tr>
<td>Janet McGuire</td>
<td>Teacher, Gallia County Schools</td>
<td>SE</td>
</tr>
<tr>
<td>Jill Madonia</td>
<td>Curriculum Specialist/Coordinator, Akron Public Schools</td>
<td>NE</td>
</tr>
<tr>
<td>Cindy McKinstry</td>
<td>Teacher, East Palestine City</td>
<td>NE</td>
</tr>
<tr>
<td>Cindy Miller</td>
<td>Curriculum Specialist/Coordinator, Maysville Local</td>
<td>SE</td>
</tr>
<tr>
<td>Anita O’Melan</td>
<td>Higher Education, Youngstown State University</td>
<td>NE</td>
</tr>
<tr>
<td>Sherryl Proctor</td>
<td>Teacher, Vantage Career Center</td>
<td>NW</td>
</tr>
<tr>
<td>Diane Reisdorff</td>
<td>Teacher, Westlake City</td>
<td>NE</td>
</tr>
<tr>
<td>Susan Rice</td>
<td>Teacher, Mount Vernon City</td>
<td>C</td>
</tr>
<tr>
<td>Tess Rivero</td>
<td>Teacher, Bellbrook-Sugarcreek Schools</td>
<td>SW</td>
</tr>
<tr>
<td>Benjamin Shaw</td>
<td>Curriculum Specialist/Coordinator, Mahoning County ESC</td>
<td>NE</td>
</tr>
<tr>
<td>Julia Shew</td>
<td>Higher Education, Columbus State Community College</td>
<td>C</td>
</tr>
<tr>
<td>Tiffany Sibert</td>
<td>Teacher, Lima Shawnee Local</td>
<td>NW</td>
</tr>
<tr>
<td>Jennifer Statzer</td>
<td>Principal, Greenville City</td>
<td>SW</td>
</tr>
<tr>
<td>Karma Vince</td>
<td>Teacher, Sylvania City</td>
<td>NW</td>
</tr>
<tr>
<td>Jennifer Walls</td>
<td>Teacher, Akron Public Schools</td>
<td>NE</td>
</tr>
<tr>
<td>Gaynell Wamer</td>
<td>Teacher, Toledo City</td>
<td>NW</td>
</tr>
<tr>
<td>Victoria Warner</td>
<td>Teacher, Greenville City</td>
<td>SW</td>
</tr>
<tr>
<td>Mary Webb</td>
<td>Teacher, North College Hill</td>
<td>SW</td>
</tr>
<tr>
<td>Barb Weidus</td>
<td>Curriculum Specialist/Coordinator, New Richmond Exempted Village</td>
<td>SW</td>
</tr>
<tr>
<td>Sandra Wilder</td>
<td>Teacher, Akron Public Schools</td>
<td>NE</td>
</tr>
<tr>
<td>Tong Yu</td>
<td>Teacher, Cincinnati Public Schools</td>
<td>SW</td>
</tr>
</tbody>
</table>