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Introduction
The ultimate goal: statistical literacy. 

Every morning, the newspaper and other me-
dia confront us with statistical information on 

topics ranging from the economy to education, from 
movies to sports, from food to medicine, and from 
public opinion to social behavior. Such information 
guides decisions in our personal lives and enables us 
to meet our responsibilities as citizens. At work, we 
may be presented with quantitative information on 
budgets, supplies, manufacturing specifi cations, mar-
ket demands, sales forecasts, or workloads. Teachers 
may be confronted with educational statistics concern-
ing student performance or their own accountability. 
Medical scientists must understand the statistical re-
sults of experiments used for testing the effectiveness 
and safety of drugs. Law enforcement professionals 
depend on crime statistics. If we consider changing 
jobs and moving to another community, then our de-
cision can be affected by statistics about cost of living, 
crime rate, and educational quality.

Our lives are governed by numbers. Every high-
school graduate should be able to use sound statistical 
reasoning to intelligently cope with the requirements 
of citizenship, employment, and family and to be pre-
pared for a healthy, happy, and productive life.

Citizenship

Public opinion polls are the most visible examples of a 
statistical application that has an impact on our lives. 

In addition to directly informing individual citizens, 
polls are used by others in ways that affect us. The po-
litical process employs opinion polls in several ways. 
Candidates for offi ce use polling to guide campaign 
strategy. A poll can determine a candidate’s strengths 
with voters, which can, in turn, be emphasized in the 
campaign. Citizens also might be suspicious that poll 
results might infl uence candidates to take positions 
just because they are popular.

A citizen informed by polls needs to understand that 
the results were determined from a sample of the pop-
ulation under study, that the reliability of the results 
depends on how the sample was selected, and that 
the results are subject to sampling error. The statisti-
cally literate citizen should understand the behavior of 
“random” samples and be able to interpret a “margin 
of sampling error.”

The federal government has been in the statistics 
business from its very inception. The U.S. Census 
was established in 1790 to provide an offi cial count 
of the population for the purpose of allocating rep-
resentatives to Congress. Not only has the role of 
the U.S. Census Bureau greatly expanded to include 
the collection of a broad spectrum of socioeconomic 
data, but other federal departments also produce ex-
tensive “offi cial” statistics concerned with agriculture, 
health, education, environment, and commerce. The 
information gathered by these agencies infl uences 
policy making and helps to determine priorities for 

Every
high-school
graduate 
should be able 
to use sound
statistical 
reasoning to 
intelligently 
cope with the 
requirements 
of citizenship, 
employment, 
and family and 
to be prepared 
for a healthy, 
happy, and
productive life.

“

”
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government spending. It is also available for general 
use by individuals or private groups. Thus, statistics 
compiled by government agencies have a tremendous 
impact on the life of the ordinary citizen.

Personal Choices

Statistical literacy is required for daily personal 
choices. Statistics provides information about the nu-
tritional quality of foods and thus informs our choices 
at the grocery store. Statistics helps to establish the 
safety and effectiveness of drugs, which aids physi-
cians in prescribing a treatment. Statistics also helps 
to establish the safety of toys to assure our children 
are not at risk. Our investment choices are guided 
by a plethora of statistical information about stocks 
and bonds. The Nielsen ratings help determine which 
shows will survive on television, thus affecting what is 
available. Many products have a statistical history, and 
our choices of products can be affected by awareness 
of this history. The design of an automobile is aided by 
anthropometrics—the statistics of the human body—
to enhance passenger comfort. Statistical ratings of 
fuel effi ciency, safety, and reliability are available to 
help us select a vehicle.

The Workplace and Professions

Individuals who are prepared to use statistical think-
ing in their careers will have the opportunity to ad-
vance to more rewarding and challenging positions. 

A statistically competent work force will allow the 
United States to compete more effectively in the glob-
al marketplace and to improve its position in the inter-
national economy. An investment in statistical literacy 
is an investment in our nation’s economic future, as 
well as in the well-being of individuals.

The competitive marketplace demands quality. Ef-
forts to improve quality and accountability are promi-
nent among the many ways that statistical thinking 
and tools can be used to enhance productivity. Qual-
ity-control practices, such as the statistical monitor-
ing of design and manufacturing processes, identify 
where improvement can be made and lead to better 
product quality. Systems of accountability can help 
produce more effective employees and organizations, 
but many accountability systems now in place are not 
based on sound statistical principles and may, in fact, 
have the opposite effect. Good accountability systems 
require proper use of statistical tools to determine and 
apply appropriate criteria.

Science

Life expectancy in the US almost doubled during the 
20th century; this rapid increase in life span is the 
consequence of science. Science has enabled us to im-
prove medical care and procedures, food production, 
and the detection and prevention of epidemics. Statis-
tics plays a prominent role in this scientifi c progress.



The U.S. Food and Drug Administration requires 
extensive testing of drugs to determine effectiveness 
and side effects before they can be sold. A recent
advertisement for a drug designed to reduce blood 
clots stated, “PLAVIX, added to aspirin and your cur-
rent medications, helps raise your protection against 
heart attack or stroke.” But the advertisement also 
warned, “The risk of bleeding may increase with 
PLAVIX...”

Statistical literacy involves a healthy dose of skepticism 
about “scientifi c” fi ndings. Is the information about 
side effects of PLAVIX treatment reliable? A statisti-
cally literate person should ask such questions and be 
able to intelligently answer them. A statistically literate 
high-school graduate will be able to understand the 
conclusions from scientifi c investigations and offer an 
informed opinion about the legitimacy of the reported 
results. According to Mathematics and Democracy: The 
Case for Quantitative Literacy (Steen, 2001), such knowl-
edge “empowers people by giving them tools to think 
for themselves, to ask intelligent questions of experts, 
and to confront authority confi dently. These are skills 
required to survive in the modern world.”

Statistical literacy is essential in our personal lives as 
consumers, citizens, and professionals. Statistics plays 
a role in our health and happiness. Sound statistical 
reasoning skills take a long time to develop. They 
cannot be honed to the level needed in the modern 
world through one high-school course. The surest way 

to help students attain the necessary skill level is to 
begin the statistics education process in the elemen-
tary grades and keep strengthening and expanding 
students’ statistical thinking skills throughout the 
middle- and high-school years. A statistically liter-
ate high-school graduate will know how to interpret 
the data in the morning newspaper and will ask the 
right questions about statistical claims. He or she will 
be comfortable handling quantitative decisions that 
come up on the job, and will be able to make informed 
decisions about quality-of-life issues.

The remainder of this document lays out a curriculum 
framework for pre-K–12 educational programs that is 
designed to help students achieve statistical literacy.

The Case for Statistics Education

Over the past quarter century, statistics (often labeled 
data analysis and probability) has become a key com-
ponent of the pre-K–12 mathematics curriculum. 
Advances in technology and modern methods of data 
analysis in the 1980s, coupled with the data richness 
of society in the information age, led to the develop-
ment of curriculum materials geared toward introduc-
ing statistical concepts into the school curriculum as 
early as the elementary grades. This grassroots effort 
was given sanction by the National Council of Teach-
ers of Mathematics (NCTM) when their infl uential 
document, Curriculum and Evaluation Standards for School 
Mathematics (NCTM, 1989), included “Data Analysis 

3
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and Probability” as one of the fi ve content strands. As 
this document and its 2000 replacement, Principles and 
Standards for School Mathematics (NCTM, 2000), became 
the basis for reform of mathematics curricula in many 
states, the acceptance of and interest in statistics as 
part of mathematics education gained strength. In 
recent years, many mathematics educators and stat-
isticians have devoted large segments of their careers 
to improving statistics education materials and peda-
gogical techniques.

NCTM is not the only group calling for improved 
statistics education beginning at the school level. The 
National Assessment of Educational Progress (NAEP, 
2005) was developed around the same content strands 
as the NCTM Standards, with data analysis and prob-
ability questions playing an increasingly prominent 
role on the NAEP exam. In 2006, the College Board 
released its College Board Standards for College Success™: 
Mathematics and Statistics, which includes “Data and 
Variation” and “Chance, Fairness, and Risk” among 
its list of eight topic areas that are “central to the 
knowledge and skills developed in the middle-school 
and high-school years.” An examination of the stan-
dards recommended by this document reveals a 
consistent emphasis on data analysis, probability, and 
statistics at each course level. 

The emerging quantitative literacy movement calls for 
greater emphasis on practical quantitative skills that 
will help assure success for high-school graduates in 

life and work; many of these skills are statistical in 
nature. To quote from Mathematics and Democracy: The 
Case for Quantitative Literacy (Steen, 2001):

Quantitative literacy, also called numeracy, is the 
natural tool for comprehending information in 
the computer age. The expectation that ordinary 
citizens be quantitatively literate is primarily a phe-
nomenon of the late twentieth century. …Unfortu-
nately, despite years of study and life experience in 
an environment immersed in data, many educated 
adults remain functionally illiterate. …Quantita-
tive literacy empowers people by giving them tools 
to think for themselves [sic], to ask intelligent 
questions of experts, and to confront authority 
confi dently. These are the skills required to thrive 
in the modern world.

A recent study from the American Diploma
Project, titled Ready or Not: Creating a High School
Diploma That Counts (www.amstat.org/education/gaise/1), 
recommends “must-have” competencies needed for 
high-school graduates “to succeed in postsecondary 
education or in high-performance, high-growth jobs.” 
These include, in addition to algebra and geometry, as-
pects of data analysis, statistics, and other applications 
that are vitally important for other subjects, as well as 
for employment in today’s data-rich economy. 

Statistics education as proposed in this Framework can 
promote the “must-have” competencies for graduates 
to “thrive in the modern world.”

“

”

Statistics
education as 
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‘must-have’

competencies 
for graduates 

to ‘thrive in the 
modern world.’
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NCTM Standards and the Framework

The main objective of this document is to provide a 
conceptual Framework for K–12 statistics education. 
The foundation for this Framework rests on the NCTM 
Principles and Standards for School Mathematics (2000).

The Framework is intended to complement the recom-
mendations of the NCTM Principles and Standards, not 
to supplant them.

The NCTM Principles and Standards describes the statis-
tics content strand as follows:

Data Analysis and Probability

Instructional programs from pre-kindergarten 
through grade 12 should enable all students to:

→ formulate questions that can be addressed with 
 data and collect, organize, and display relevant 
 data to answer them; 

→ select and use appropriate statistical methods to 
 analyze data; 

→ develop and evaluate inferences and predictions 
 that are based on data; and

→ understand and apply basic concepts of probability. 

The “Data Analysis and Probability” standard recom-
mends that students formulate questions that can be 
answered using data and address what is involved in 
wisely gathering and using that data. Students should 

learn how to collect data, organize their own or oth-
ers’ data, and display the data in graphs and charts that 
will be useful in answering their questions. This stan-
dard also includes learning methods for analyzing data 
and ways of making inferences and drawing conclu-
sions from data. The basic concepts and applications 
of probability also are addressed, with an emphasis on 
the way probability and statistics are related.

The NCTM Principles and Standards elaborates on these 
themes somewhat and provides examples of the types 
of lessons and activities that might be used in a class-
room. More complete examples can be found in the 
NCTM Navigation Series on Data Analysis and Probability 
(2002–2004). Statistics, however, is a relatively new 
subject for many teachers, who have not had an op-
portunity to develop sound knowledge of the prin-
ciples and concepts underlying the practices of data 
analysis that they now are called upon to teach. These 
teachers do not clearly understand the difference be-
tween statistics and mathematics. They do not see the 
statistics curriculum for grades pre-K–12 as a cohesive 
and coherent curriculum strand. These teachers may 
not see how the overall statistics curriculum provides 
a developmental sequence of learning experiences. 

This Framework provides a conceptual structure for 
statistics education that gives a coherent picture of the 
overall curriculum. 
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The Difference between Statistics and 
Mathematics

“Statistics is a methodological discipline. It exists not 
for itself, but rather to offer to other fi elds of study a 
coherent set of ideas and tools for dealing with data. 
The need for such a discipline arises from the omnipres-
ence of variability.” (Moore and Cobb, 1997)

A major objective of statistics education is to help 
students develop statistical thinking. Statistical think-
ing, in large part, must deal with this omnipresence 
of variability; statistical problem solving and decision 
making depend on understanding, explaining, and 
quantifying the variability in the data.

It is this focus on variability in data that sets apart sta-
tistics from mathematics.

The Nature of Variability

There are many sources of variability in data. Some of 
the important sources are described below.

Measurement Variability—Repeated measurements on 
the same individual vary. Sometimes two measure-
ments vary because the measuring device produces 
unreliable results, such as when we try to measure 
a large distance with a small ruler. At other times, 
variability results from changes in the system being 
measured. For example, even with a precise measur-
ing device, your recorded blood pressure could differ 
from one moment to the next.

Natural Variability—Variability is inherent in nature. 
Individuals are different. When we measure the same 
quantity across several individuals, we are bound to 
get differences in the measurements. Although some 
of this may be due to our measuring instrument, most 
of it is simply due to the fact that individuals differ. 
People naturally have different heights, different ap-
titudes and abilities, and different opinions and emo-
tional responses. When we measure any one of these 
traits, we are bound to get variability in the measure-
ments. Different seeds for the same variety of bean 
will grow to different sizes when subjected to the same 
environment because no two seeds are exactly alike; 
there is bound to be variability from seed to seed in 
the measurements of growth.

Induced Variability—If we plant one pack of bean seeds 
in one fi eld, and another pack of seeds in another loca-
tion with a different climate, then an observed differ-
ence in growth among the seeds in one location with 
those in the other might be due to inherent differ-
ences in the seeds (natural variability), or the observed 
difference might be due to the fact that the locations 
are not the same. If one type of fertilizer is used on 
one fi eld and another type on the other, then observed 
differences might be due to the difference in fertiliz-
ers. For that matter, the observed difference might be 
due to a factor we haven’t even thought about. A more 
carefully designed experiment can help us determine 
the effects of different factors.



This one basic idea, comparing natural variability to 
the variability induced by other factors, forms the 
heart of modern statistics. It has allowed medical sci-
ence to conclude that some drugs are effective and 
safe, whereas others are ineffective or have harmful 
side effects. It has been employed by agricultural sci-
entists to demonstrate that a variety of corn grows 
better in one climate than another, that one fertilizer 
is more effective than another, or that one type of feed 
is better for beef cattle than another. 

Sampling Variability—In a political poll, it seems rea-
sonable to use the proportion of voters surveyed (a 
sample statistic) as an estimate of the unknown pro-
portion of all voters who support a particular candi-
date. But if a second sample of the same size is used, 
it is almost certain that there would not be exactly the 
same proportion of voters in the sample who support 
the candidate. The value of the sample proportion 
will vary from sample to sample. This is called sam-
pling variability. So what is to keep one sample from 
estimating that the true proportion is .60 and another 
from saying it is .40? This is possible, but unlikely, 
if proper sampling techniques are used. Poll results 
are useful because these techniques and an adequate 
sample size can ensure that unacceptable differences 
among samples are quite unlikely.

An excellent discussion on the nature of variability is 
given in Seeing Through Statistics (Utts, 1999). 

The Role of Context

“The focus on variability naturally gives statistics a 
particular content that sets it apart from mathematics, 
itself, and from other mathematical sciences, but there 
is more than just content that distinguishes statisti-
cal thinking from mathematics. Statistics requires a 
different kind of thinking, because data are not just 
numbers, they are numbers with a context. In mathematics, 
context obscures structure. In data analysis, context 
provides meaning.” (Moore and Cobb, 1997)

Many mathematics problems arise from applied con-
texts, but the context is removed to reveal mathemati-
cal patterns. Statisticians, like mathematicians, look 
for patterns, but the meaning of the patterns depends 
on the context.

A graph that occasionally appears in the business sec-
tion of newspapers shows a plot of the Dow Jones 
Industrial Average (DJIA) over a 10-year period. The 
variability of stock prices draws the attention of an 
investor. This stock index may go up or down over 
intervals of time, and may fall or rise sharply over a 
short period. In context, the graph raises questions. A 
serious investor is not only interested in when or how 
rapidly the index goes up or down, but also why. What 
was going on in the world when the market went up; 
what was going on when it went down? Now strip 
away the context. Remove time (years) from the hori-
zontal axis and call it “X,” remove stock value (DJIA) 

“ In mathematics, 
context obscures 
structure. In 
data analysis, 
context provides 
meaning.”

7



8

from the vertical axis and call it “Y,” and there remains 
a graph of very little interest or mathematical content! 

Probability

Probability is a tool for statistics.

Probability is an important part of any mathematical 
education. It is a part of mathematics that enriches the 
subject as a whole by its interactions with other uses of 
mathematics. Probability is an essential tool in applied 
mathematics and mathematical modeling. It is also an 
essential tool in statistics.

The use of probability as a mathematical model and 
the use of probability as a tool in statistics employ not 
only different approaches, but also different kinds of 
reasoning. Two problems and the nature of the solu-
tions will illustrate the difference.

Problem 1:

Assume a coin is “fair.”

Question: If we toss the coin fi ve times, how many 
heads will we get?

Problem 2:

You pick up a coin.

Question: Is this a fair coin?

Problem 1 is a mathematical probability problem. 
Problem 2 is a statistics problem that can use the 

mathematical probability model determined in Prob-
lem 1 as a tool to seek a solution.

The answer to neither question is deterministic. Coin 
tossing produces random outcomes, which suggests 
that the answer is probabilistic. The solution to Prob-
lem 1 starts with the assumption that the coin is fair 
and proceeds to logically deduce the numerical prob-
abilities for each possible number of heads: 0, 1,…, 5.

The solution to Problem 2 starts with an unfamiliar 
coin; we don’t know if it is fair or biased. The search 
for an answer is experimental—toss the coin and see 
what happens. Examine the resulting data to see if it 
looks as if it came from a fair coin or a biased coin. 
There are several possible approaches, including toss 
the coin fi ve times and record the number of heads. 
Then, do it again: Toss the coin fi ve times and record 
the number of heads. Repeat 100 times. Compile the 
frequencies of outcomes for each possible number 
of heads. Compare these results to the frequencies 
predicted by the mathematical model for a fair coin 
in Problem 1. If the empirical frequencies from the 
experiment are quite dissimilar from those predicted 
by the mathematical model for a fair coin and are not 
likely to be caused by random variation in coin tosses, 
then we conclude that the coin is not fair. In this case, 
we induce an answer by making a general conclusion 
from observations of experimental results.
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Probability and Chance Variability

Two important uses of “randomization” in statisti-
cal work occur in sampling and experimental design. 
When sampling, we “select at random,” and in experi-
ments, we randomly assign individuals to different 
treatments. Randomization does much more than 
remove bias in selections and assignments. Random-
ization leads to chance variability in outcomes that can 
be described with probability models.

The probability of something says about what percent 
of the time it is expected to happen when the basic 
process is repeated over and over again. Probability 
theory does not say very much about one toss of a 
coin; it makes predictions about the long-run behavior 
of many coin tosses. 

Probability tells us little about the consequences of 
random selection for one sample, but describes the 
variation we expect to see in samples when the sam-
pling process is repeated a large number of times. 
Probability tells us little about the consequences of 
random assignment for one experiment, but describes 
the variation we expect to see in the results when the 
experiment is replicated a large number of times.

When randomness is present, the statistician wants to 
know if the observed result is due to chance or some-
thing else. This is the idea of statistical signifi cance.

The Role of Mathematics in Statistics
Education

The evidence that statistics is different from math-
ematics is not presented to argue that mathematics is 
not important to statistics education or that statistics 
education should not be a part of mathematics educa-
tion. To the contrary, statistics education becomes in-
creasingly mathematical as the level of understanding 
goes up. But data collection design, exploration of data, 
and the interpretation of results should be emphasized 
in statistics education for statistical literacy. These are 
heavily dependent on context, and, at the introductory 
level, involve limited formal mathematics.

Probability plays an important role in statistical analy-
sis, but formal mathematical probability should have 
its own place in the curriculum. Pre-college statistics 
education should emphasize the ways probability is 
used in statistical thinking; an intuitive grasp of prob-
ability will suffi ce at these levels.
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The Framework
Statistical problem solving is an investigative pro-

cess that involves four components:

I. Formulate Questions

→ clarify the problem at hand 
→ formulate one (or more) questions that can be 
 answered with data 

II. Collect Data

→ design a plan to collect appropriate data
→ employ the plan to collect the data 

III. Analyze Data

→ select appropriate graphical and numerical 
 methods
→ use these methods to analyze the data 

IV. Interpret Results

→ interpret the analysis 
→ relate the interpretation to the original question

The Role of Variability in the Problem-
Solving Process

I. Formulate Questions

Anticipating Variability—Making the Statistics Question 
Distinction
The formulation of a statistics question requires an 
understanding of the difference between a question 

that anticipates a deterministic answer and a question 
that anticipates an answer based on data that vary. 

The question, “How tall am I?” will be answered 
with a single height. It is not a statistics question. The 
question “How tall are adult men in the USA?” would 
not be a statistics question if all these men were ex-
actly the same height! The fact that there are differing 
heights, however, implies that we anticipate an answer 
based on measurements of height that vary. This is a 
statistics question. 

The poser of the question, “How does sunlight affect the 
growth of a plant?” should anticipate that the growth of 
two plants of the same type exposed to the same sun-
light will likely differ. This is a statistics question.

The anticipation of variability is the basis for under-
standing the statistics question distinction. 

II. Collect Data

Acknowledging Variability—Designing for Differences
Data collection designs must acknowledge variability 
in data, and frequently are intended to reduce variabil-
ity. Random sampling is intended to reduce the dif-
ferences between sample and population. The sample 
size infl uences the effect of sampling variability (er-
ror). Experimental designs are chosen to acknowledge 
the differences between groups subjected to different 
treatments. Random assignment to the groups is in-
tended to reduce differences between the groups due 
to factors that are not manipulated in the experiment. 

The
formulation 
of a statistics 
question
requires an 
understanding 
of the
difference 
between a 
question that 
anticipates a 
deterministic 
answer and a 
question that 
anticipates
an answer 
based on data 
that vary.

“

”
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Some experimental designs pair subjects so they are 
similar. Twins frequently are paired in medical ex-
periments so that observed differences might be more 
likely attributed to the difference in treatments, rather 
than differences in the subjects. 

The understanding of data collection designs that 
acknowledge differences is required for effective 
collection of data.

III. Analyze Data

Accounting of Variability—Using Distributions
The main purpose of statistical analysis is to give an 
accounting of the variability in the data. When results 
of an election poll state “42% of those polled support 
a particular candidate with margin of error +/- 3% at 
the 95% confi dence level,” the focus is on sampling 
variability. The poll gives an estimate of the support 
among all voters. The margin of error indicates how 
far the sample result (42% +/- 3%) might differ from 
the actual percent of all voters who support the can-
didate. The confi dence level tells us how often esti-
mates produced by the method employed will produce
correct results. This analysis is based on the distribu-
tion of estimates from repeated random sampling. 

When test scores are described as “normally distrib-
uted with mean 450 and standard deviation 100,” the 
focus is on how the scores differ from the mean. The 
normal distribution describes a bell-shaped pattern of 

scores, and the standard deviation indicates the level 
of variation of the scores from the mean.

Accounting for variability with the use of distribu-
tions is the key idea in the analysis of data.

IV. Interpret Results

Allowing for Variability—Looking beyond the Data
Statistical interpretations are made in the presence of 
variability and must allow for it. 

The result of an election poll must be interpreted as an 
estimate that can vary from sample to sample. The gen-
eralization of the poll results to the entire population of 
voters looks beyond the sample of voters surveyed and 
must allow for the possibility of variability of results 
among different samples. The results of a randomized 
comparative medical experiment must be interpreted in 
the presence of variability due to the fact that different 
individuals respond differently to the same treatment 
and the variability due to randomization. The gener-
alization of the results looks beyond the data collected 
from the subjects who participated in the experiment 
and must allow for these sources of variability.

Looking beyond the data to make generalizations 
must allow for variability in the data.

Maturing over Levels

The mature statistician understands the role of vari-
ability in the statistical problem-solving process. At the 
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point of question formulation, the statistician antici-
pates the data collection, the nature of the analysis, and 
the possible interpretations—all of which involve pos-
sible sources of variability. In the end, the mature prac-
titioner refl ects upon all aspects of data collection and 
analysis as well as the question, itself, when interpreting 
results. Likewise, he or she links data collection and 
analysis to each other and the other two components.

Beginning students cannot be expected to make all of 
these linkages. They require years of experience and 
training. Statistical education should be viewed as a 
developmental process. To meet the proposed goals, 
this report provides a framework for statistical educa-
tion over three levels. If the goal were to produce a 
mature practicing statistician, there certainly would 
be several levels beyond these. There is no attempt to 
tie these levels to specifi c grade levels.

The Framework uses three developmental Levels: A, B, 
and C. Although these three levels may parallel grade 
levels, they are based on development in statistical 
literacy, not age. Thus, a middle-school student who 
has had no prior experience with statistics will need 
to begin with Level A concepts and activities before 
moving to Level B. This holds true for a secondary 
student as well. If a student hasn’t had Level A and B 
experiences prior to high school, then it is not appro-
priate for that student to jump into Level C expecta-
tions. The learning is more teacher-driven at Level A, 
but becomes student-driven at Levels B and C.

The Framework Model

The conceptual structure for statistics education is 
provided in the two-dimensional model shown in 
Table 1. One dimension is defi ned by the problem-
solving process components plus the nature of the 
variability considered and how we focus on variabil-
ity. The second dimension is comprised of the three 
developmental levels.
Each of the fi rst four rows describes a process com-
ponent as it develops across levels. The fi fth row 
indicates the nature of the variability considered at a 
given level. It is understood that work at Level B as-
sumes and develops further the concepts from Level 
A; likewise, Level C assumes and uses concepts from 
the lower levels.

Reading down a column will describe a complete 
problem investigation for a particular level along with 
the nature of the variability considered.



14

Table 1: The Framework

Process Component
I. Formulate Question

II. Collect Data

III. Analyze Data

Level A
Beginning awareness 
of the statistics question 
distinction

Teachers pose questions of 
interest

Questions restricted to the 
classroom

Do not yet design for
differences

Census of classroom

Simple experiment

Use particular properties of 
distributions in the context 
of a specifi c example

Display variability within a 
group

Compare individual to 
individual

Compare individual to 
group

Beginning awareness of 
group to group

Observe association
between two variables

Level B
Increased awareness of 
the statistics question 
distinction

Students begin to pose 
their own questions of 
interest

Questions not restricted to 
the classroom

Beginning awareness of 
design for differences

Sample surveys; begin to 
use random selection

Comparative experiment; 
begin to use random
allocation

Learn to use particular 
properties of distributions 
as tools of analysis

Quantify variability within 
a group

Compare group to group in 
displays

Acknowledge sampling 
error

Some quantifi cation of
association; simple models 
for association

Level C
Students can make the 
statistics question
distinction

Students pose their own 
questions of interest

Questions seek
generalization

Students make design for 
differences

Sampling designs with 
random selection

Experimental designs with 
randomization

Understand and use
distributions in analysis
as a global concept

Measure variability within a 
group; measure variability 
between groups

Compare group to group 
using displays and
measures of variability

Describe and quantify
sampling error

Quantifi cation of
association; fi tting of
models for association
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Process Component
IV. Interpret Results

Nature of Variability

Focus on Variability

Level A
Students do not look
beyond the data

No generalization beyond 
the classroom

Note difference between 
two individuals with
different conditions

Observe association in 
displays

Measurement variability

Natural variability

Induced variability

Variability within a group

Level B
Students acknowledge
that looking beyond the 
data is feasible

Acknowledge that a
sample may or may not
be representative of the
larger population

Note the difference
between two groups
with different conditions

Aware of distinction
between observational 
study and experiment

Note differences in
strength of association

Basic interepretation of 
models for association

Aware of the distinction 
between association and 
cause and effect

Sampling variability

Variability within a group 
and variability between 
groups

Covariability

Level C
Students are able to look 
beyond the data in some 
contexts

Generalize from sample to 
population

Aware of the effect of
randomization on the 
results of experiments

Understand the difference 
between observational 
studies and experiments

Interpret measures of 
strength of association

Interpret models
of association

Distinguish between
conclusions from
association studies and 
experiments

Chance variability

Variability in model fi tting



Illustrations

All four steps of the problem-solving process are used 
at all three levels, but the depth of understanding and 
sophistication of methods used increases across Lev-
els A, B, and C. This maturation in understanding the 
problem-solving process and its underlying concepts 
is paralleled by an increasing complexity in the role of 
variability. The illustrations of learning activities giv-
en here are intended to clarify the differences across 
the developmental levels for each component of the 
problem-solving process. Later sections will give il-
lustrations of the complete problem-solving process 
for learning activities at each level.

I. Formulate Questions 

Word Length Example 

Level A: How long are the words on this page?

Level B: Are the words in a chapter of a fi fth-grade 
book longer than the words in a chapter of a third-
grade book?

Level C: Do fi fth-grade books use longer words than 
third-grade books? 

Popular Music Example 

Level A: What type of music is most popular among 
students in our class?

Level B: How do the favorite types of music compare 
among different classes?

Level C: What type of music is most popular among 
students in our school?

Height and Arm Span Example

Level A: In our class, are the heights and arm spans of 
students approximately the same?

Level B: Is the relationship between arm span and 
height for the students in our class the same as the 
relationship between arm span and height for the stu-
dents in another class?

Level C: Is height a useful predictor of arm span for 
the students in our school?

Plant Growth Example

Level A: Will a plant placed by the window grow taller 
than a plant placed away from the window?

Level B: Will fi ve plants placed by the window grow 
taller than fi ve plants placed away from the window?

Level C: How does the level of sunlight affect the 
growth of plants?

II. Collect Data

Word Length Example

Level A: How long are the words on this page?

“

”

The
illustrations
of learning 

activities given 
here are

intended to 
clarify the

differences 
across the 

developmental 
levels for each 

component
of the

problem-solving 
process.
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The length of every word on the page is determined 
and recorded.

Level B: Are the words in a chapter of a fi fth-grade 
book longer than the words in a chapter of a third-
grade book?

A simple random sample of words from each chapter 
is used.

Level C: Do fi fth-grade books use longer words than 
third-grade books? 

Different sampling designs are considered and com-
pared, and some are used. For example, rather than 
selecting a simple random sample of words, a simple 
random sample of pages from the book is selected 
and all the words on the chosen pages are used for 
the sample.

Note: At each level, issues of measurement should 
be addressed. The length of word depends on the 
defi nition of “word.” For instance, is a number a 
word? Consistency of defi nition helps reduce mea-
surement variability.

Plant Growth Example 

Level A: Will a plant placed by the window grow taller 
than a plant placed away from the window?

A seedling is planted in a pot that is placed on the 
window sill. A second seedling of the same type and 
size is planted in a pot that is placed away from the 

window sill. After six weeks, the change in height for 
each is measured and recorded.

Level B: Will fi ve plants of a particular type placed by 
the window grow taller than fi ve plants of the same 
type placed away from the window?

Five seedlings of the same type and size are planted in 
a pan that is placed on the window sill. Five seedlings 
of the same type and size are planted in a pan that is 
placed away from the window sill. Random numbers 
are used to decide which plants go in the window. Af-
ter six weeks, the change in height for each seedling is 
measured and recorded.

Level C: How does the level of sunlight affect the 
growth of plants?

Fifteen seedlings of the same type and size are select-
ed. Three pans are used, with fi ve of these seedlings 
planted in each. Fifteen seedlings of another variety 
are selected to determine if the effect of sunlight is 
the same on different types of plants. Five of these are 
planted in each of the three pans. The three pans are 
placed in locations with three different levels of light. 
Random numbers are used to decide which plants go 
in which pan. After six weeks, the change in height for 
each seedling is measured and recorded.

Note: At each level, issues of measurement should be 
addressed. The method of measuring change in height 
must be clearly understood and applied in order to re-
duce measurement variability.
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III. Analyze Data

Popular Music Example 

Level A: What type of music is most popular among 
students in our class?

A bar graph is used to display the number of students 
who choose each music category.

Level B: How do the favorite types of music compare 
among different classes?

For each class, a bar graph is used to display the per-
cent of students who choose each music category. The 
same scales are used for both graphs so that they can 
easily be compared. 

Level C: What type of music is most popular among 
students in our school?

A bar graph is used to display the percent of students who 
choose each music category. Because a random sample is 
used, an estimate of the margin of error is given.

Note: At each level, issues of measurement should 
be addressed. A questionnaire will be used to gather 
students’ music preferences. The design and wording 
of the questionnaire must be carefully considered to 
avoid possible bias in the responses. The choice of 
music categories also could affect results.

Height and Arm Span Example 

Level A: In our class, are the heights and arm spans of 
students approximately the same?

The difference between height and arm span is deter-
mined for each individual. An X-Y plot (scatterplot) is 
constructed with X = height, Y = arm span. The line 
Y = X is drawn on this graph.

Level B: Is the relationship between arm span and 
height for the students in our class the same as the 
relationship between arm span and height for the stu-
dents in another class?

For each class, an X-Y plot is constructed with X = 
height, Y = arm span. An “eye ball” line is drawn on 
each graph to describe the relationship between height 
and arm span. The equation of this line is determined. 
An elementary measure of association is computed.

Level C: Is height a useful predictor of arm span for 
the students in our school?

The least squares regression line is determined and as-
sessed for use as a prediction model.

Note: At each level, issues of measurement should be 
addressed. The methods used to measure height and 
arm span must be clearly understood and applied in 
order to reduce measurement variability. For instance, 
do we measure height with shoes on or off?

IV. Interpret Results

Word Length Example 

Level A: How long are the words on this page?
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The dotplot of all word lengths is examined and sum-
marized. In particular, students will note the longest 
and shortest word lengths, the most common and least 
common lengths, and the length in the middle.

Level B: Are the words in a chapter of a fi fth-grade 
book longer than the words in a chapter of a third-
grade book?

Students interpret a comparison of the distribution of 
a sample of word lengths from the fi fth-grade book 
with the distribution of word lengths from the third-
grade book using a boxplot to represent each of these. 
The students also acknowledge that samples are be-
ing used that may or may not be representative of the 
complete chapters.

The boxplot for a sample of word lengths from the 
fi fth-grade book is placed beside the boxplot of the 
sample from the third-grade book.

Level C: Do fi fth-grade books use longer words than 
third-grade books? 

The interpretation at Level C includes the interpreta-
tion at Level B, but also must consider generalizing 
from the books included in the study to a larger popu-
lation of books.

Plant Growth Example 

Level A: Will a plant placed by the window grow taller 
than a plant placed away from the window?

In this simple experiment, the interpretation is just a 
matter of comparing one measurement of change in 
size to another.

Level B: Will fi ve plants placed by the window grow 
taller than fi ve plants placed away from the window?

In this experiment, the student must interpret a com-
parison of one group of fi ve measurements with an-
other group. If a difference is noted, then the student 
acknowledges it is likely caused by the difference in 
light conditions.

Level C: How does the level of sunlight affect the 
growth of plants?

There are several comparisons of groups possible with 
this design. If a difference is noted, then the student 
acknowledges it is likely caused by the difference in 
light conditions or the difference in types of plants. 
It also is acknowledged that the randomization used 
in the experiment can result in some of the observed 
differences.

Nature of Variability

The focus on variability grows increasingly more 
sophisticated as students progress through the 
developmental levels.

Variability within a Group

This is the only type considered at Level A. In the 
word length example, differences among word lengths 

“ The focus
on variability 
grows
increasingly 
more
sophisticated 
as students 
progress 
through the 
developmental 
levels.”
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on a single page are considered; this is variability with-
in a group of word lengths. In the popular music ex-
ample, differences in how many students choose each 
category of music are considered; this is variability 
within a group of frequencies.

Variability within a Group and Variability
between Groups

At Level B, students begin to make comparisons of 
groups of measurements. In the word length example, 
a group of words from a fi fth-grade book is compared 
to a group from a third-grade book. Such a comparison 
not only notes how much word lengths differ within 
each group, but must also take into consideration the 
differences between the two groups, such as the dif-
ference between median or mean word lengths.

Covariability

At Level B, students also begin to investigate the “sta-
tistical” relationship between two variables. The na-
ture of this statistical relationship is described in terms 
of how the two variables “co-vary.” In the height and 
arm span example, for instance, if the heights of two 
students differ by two centimeters, then we would like 
our model of the relationship to tell us by how much 
we might expect their arm spans to differ.

Variability in Model Fitting

At Level C, students assess how well a regression 
line will predict values of one variable from values 

of another variable using residual plots. In the height 
and arm span example, for instance, this assessment 
is based on examining whether differences between 
actual arm spans and the arm spans predicted by the 
model randomly vary about the horizontal line of “no 
difference” in the residual plot. Inference about a pre-
dicted value of y for a given value of x is valid only if 
the values of y vary at random according to a normal 
distribution centered on the regression line. Students 
at Level C learn to estimate this variability about the 
regression line using the estimated standard deviation 
of the residuals.

Induced Variability

In the plant growth example at Level B, the experi-
ment is designed to determine if there will be a differ-
ence between the growth of plants in sunlight and of 
plants away from sunlight. We want to determine if an 
imposed difference on the environments will induce a 
difference in growth.

Sampling Variability

In the word length example at Level B, samples of 
words from a chapter are used. Students observe that 
two samples will produce different groups of word 
lengths. This is sampling variability.

Chance Variability from Sampling

When random selection is used, differences between 
samples will be due to chance. Understanding this 
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chance variation is what leads to the predictability of 
results. In the popular music example, at Level C, this 
chance variation is not only considered, but is also the 
basis for understanding the concept of margin of error.

Chance Variability Resulting from Assignment
to Groups in Experiments

In the plant growth example at Level C, plants are 
randomly assigned to groups. Students consider how 
this chance variation in random assignments might 
produce differences in results, although a formal 
analysis is not done.

Detailed Descriptions of Each Level

As this document transitions into detailed descrip-
tions of each level, it is important to note that the 
examples selected for illustrating key concepts and 
the problem-solving process of statistical reason-
ing are based on real data and real-world contexts. 
Those of you reading this document are stakeholders, and 
will need to be flexible in adapting these examples to fit your 
instructional circumstances.
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Level A
Children are surrounded by data. They may think 

of data as a tally of students’ preferences, such 
as favorite type of music, or as measurements, 

such as students’ arm spans and number of books in 
school bags.
It is in Level A that children need to develop data 
sense—an understanding that data are more than just 
numbers. Statistics changes numbers into information. 

Students should learn that data are generated with re-
spect to particular contexts or situations and can be used 
to answer questions about the context or situation.
Opportunities should be provided for students to 
generate questions about a particular context (such as 
their classroom) and determine what data might be 
collected to answer these questions. 
Students also should learn how to use basic statistical 
tools to analyze the data and make informal inferences 
in answering the posed questions.
Finally, students should develop basic ideas of prob-
ability in order to support their later use of probability 
in drawing inferences at Levels B and C. 

It is preferable that students actually collect data, but 
not necessary in every case. Teachers should take 
advantage of naturally occurring situations in which 
students notice a pattern about some data and begin 
to raise questions. For example, when taking daily at-
tendance one morning, students might note that many 
students are absent. The teacher could capitalize on 

this opportunity to have the students formulate ques-
tions that could be answered with attendance data. 

Specifi cally, Level A recommendations in the Investi-
gative Process include:

I. Formulate the Question

→ Teachers help pose questions (questions in 
 contexts of interest to the student).
→ Students distinguish between statistical 
 solution and fi xed answer.

II. Collect Data to Answer the Question

→ Students conduct a census of the classroom.
→ Students understand individual-to-individual 
 natural variability.
→ Students conduct simple experiments with 
 nonrandom assignment of treatments.
→ Students understand induced variability
 attributable to an experimental condition.

III. Analyze the Data

→ Students compare individual to individual.
→ Students compare individual to a group.
→ Students become aware of  group to group 
 comparison.
→ Students understand the idea of  a distribution.
→ Students describe a distribution.
→ Students observe association between two variables.
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→ Students use tools for exploring distributions
and association, including:
▪ Bar Graph
▪ Dotplot
▪ Stem and Leaf Plot
▪ Scatterplot
▪ Tables (using counts)
▪ Mean, Median, Mode, Range

▪ Modal Category

IV. Interpret Results

→ Students infer to the classroom.
→ Students acknowledge that results may be

different in another class or group.
→ Students recognize the limitation of scope of

inference to the classroom.

Children at Level A may be interested in the favorite 
type of music among students at a certain grade level. 
An end of the year party is being planned and there 
is only enough money to hire one musical group. The 
class might investigate the question: What type of music 
is most popular among students?

This question attempts to measure a characteristic 
in the population of children at the grade level that 

Example 1: Choosing the Band for the End of the Year Party—
Conducting a Survey

will have the party. The characteristic, favorite mu-
sic type, is a categorical variable—each child in that 
grade would be placed in a particular non-numerical 
category based on his or her favorite music type. The 
resulting data often are called categorical data.

The Level A class would most likely conduct a cen-
sus of the students in a particular classroom to gauge 
what the favorite music type might be for the whole 
grade. At Level A, we want students to recognize that 
there will be individual-to-individual variability.

For example, a survey of 24 students in one of the 
classrooms at a particular grade level is taken. The 
data are summarized in the frequency table below. 
This frequency table is a tabular representation that takes 
Level A students to a summative level for categorical 
data. Students might fi rst use tally marks to record the 
measurements of categorical data before fi nding fre-
quencies (counts) for each category.

Table 2: Frequency Count Table

Favorite Frequency or Count

Country   8

Rap 12

Rock   4

A Level A student might fi rst use a picture graph to 
represent the tallies for each category. A picture graph 
uses a picture of some sort (such as a type of musical 
band) to represent each individual. Thus, each child 
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who favors a particular music type would put a cut-
out of that type of band directly onto the graph the 
teacher has created on the board. Instead of a picture 
of a band, another representation—such as a picture 
of a guitar, an X, or a colored square—can be used 
to represent each individual preference. A child who 
prefers “country” would go to the board and place a 
guitar, dot, X, or color in a square above the column 
labeled “country.” In both cases, there is a deliberate 
recording of each data value, one at a time. 

Note that a picture graph refers to a graph where an 
object, such as a construction paper cut-out, is used to 
represent one individual on the graph. (A cut-out of a 
tooth might be used to record how many teeth were 
lost by children in a kindergarten class each month.) 
The term pictograph often is used to refer to a graph in 
which a picture or symbol is used to represent several 
items that belong in the same category. For example, 
on a graph showing the distribution of car riders, 
walkers, and bus riders in a class, a cut-out of a school 
bus might be used to represent fi ve bus riders. Thus, 
if the class had 13 bus riders, there would be approxi-
mately 2.5 busses on the graph. 

This type of graph requires a basic understanding 
of proportional or multiplicative reasoning, and for 
this reason we do not advocate its use at Level A. 
Similarly, circle graphs require an understanding of 
proportional reasoning, so we do not advocate their 
use at Level A. 
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Figure 1: Picture graph of music preferences

A bar graph takes the student to the summative level with 
the data summarized from some other representation, 



26

such as a picture graph or a frequency count table. The 
bar on a bar graph is drawn as a rectangle, reaching up 
to the desired number on the y-axis. 

A bar graph of students’ music preferences is dis-
played below for the census taken of the classroom 
represented in the above frequency count table and 
picture graph.
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Figure 2: Bar graph of music preferences

Students at Level A should recognize the mode as a way 
to describe a “representative” or “typical” value for 
the distribution. 

The mode is most useful for categorical data. Students 
should understand that the mode is the category that 
contains the most data points, often referred to as the 
modal category. In our favorite music example, rap music 

was preferred by more children, thus the mode or 
modal category of the data set is rap music. Students 
could use this information to help the teachers in 
seeking a musical group for the end of the year party 
that specializes in rap music.

The vertical axis on the bar graph in Figure 2 could 
be scaled in terms of the proportion or percent of the 
sample for each category. As this involves proportion-
al reasoning, converting frequencies to proportions 
(or percentages) will be developed in Level B.

Because most of the data collected at Level A will 
involve a census of the students’ classroom, the fi rst 
stage is for students to learn to read and interpret at a 
simple level what the data show about their own class. 
Reading and interpreting comes before inference. It is 
important to consider the question:

What might have caused the data to look like this?

It is also important for children to think about if and 
how their fi ndings would “scale up” to a larger group, 
such as the entire grade level, the whole school, all 
children in the school system, all children in the state, 
or all people in the nation. They should note variables 
(such as age or geographic location) that might affect 
the data in the larger set. In the music example above, 
students might speculate that if they collected data 
on music preference from their teachers, the teach-
ers might prefer a different type of music. Or, what 
would happen if they collected music preference from 

Students 
should 
understand 
that the mode 
is the category 
that contains 
the most data 
points, often 
referred to 
as the modal 
category. ”



27

middle-school students in their school system? Level 
A students should begin recognizing the limitations 
of the scope of inference to a specifi c classroom.

Comparing Groups

Students at Level A may be interested in comparing 
two distinct groups with respect to some characteris-
tic of those groups. For example, is there a difference 
between two groups—boys and girls—with respect 
to student participation in sports? The characteristic 
“participation in sports” is categorical (yes or no). The 
resulting categorical data for each gender may be ana-
lyzed using a frequency count table or bar graph. An-
other question Level A students might ask is whether 
there is a difference between boys and girls with 
respect to the distance they can jump, an example of 
taking measurements on a numerical variable. Data on 
numerical variables are obtained from situations that 
involve taking measurements, such as heights or tem-
peratures, or situations in which objects are counted 
(e.g., determining the number of letters in your fi rst 
name, the number of pockets on clothing worn by 
children in the class, or the number of siblings each 
child has). Such data often are called numerical data.

Returning to the question of comparing boys and girls 
with respect to jumping distance, students may mea-
sure the jumping distance for all of their classmates. 
Once the numerical data are gathered, the children 
might compare the lengths of girls’ and boys’ jumps 

using a back-to-back ordered stem and leaf plot, such as 
the one below.

Figure 3: Stem and leaf plot of jumping distances
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From the stem and leaf plot, students can get a sense 
of shape—more symmetric for the boys than for the 
girls—and of the fact that boys tend to have longer 
jumps. Looking ahead to Level C, the previous ex-
amples of data collection design will be more formally 
discussed as examples of observational studies. The 
researcher has no control over which students go into 
the boy and girl groups (the pre-existing condition of 
gender defi nes the groups). The researcher then merely 
observes and collects measurements on characteristics 
within each group. 
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The Simple Experiment

Another type of design for collecting data appropri-
ate at Level A is a simple experiment, which consists of 
taking measurements on a particular condition or 
group. Level A students may be interested in tim-
ing the swing of a pendulum or seeing how far a toy 
car runs off the end of a slope from a fi xed starting 
position (future Pinewood Derby participants?) Also, 
measuring the same thing several times and fi nding 
a mean helps to lay the foundation for the fact that 
the mean has less variability as an estimate of the true 
mean value than does a single reading. This idea will 
be developed more fully at Level C.

A simple comparative experiment is like a science experi-
ment in which children compare the results of two or 
more conditions. For example, children might plant 
dried beans in soil and let them sprout, and then com-
pare which one grows fastest—the one in the light or 
the one in the dark. The children decide which beans 
will be exposed to a particular type of lighting. The 
conditions to be compared here are the two types of 
lighting environments—light and dark. The type of 
lighting environment is an example of a categorical 
variable. Measurements of the plants’ heights can be 
taken at the end of a specifi ed time period to answer 
the question of whether one lighting environment is 
better for growing beans. The collected heights are an 

Example 2: Growing Beans—A Simple Comparative Experiment

example of numerical data. In Level C, the concept of 
an experiment (where conditions are imposed by the 
researcher) will be more fully developed.

Another appropriate graphical representation for numerical 
data on one variable (in addition to the stem and leaf 
plot) at Level A is a dotplot. Both the dotplot and stem 
and leaf plot can be used to easily compare two or 
more similar sets of numerical data. In creating a 
dotplot, the x-axis should be labeled with a range of 
values that the numerical variable can assume. The 
x-axis for any one-variable graph conventionally is
the axis representing the values of the variable under
study. For example, in the bean growth experiment,
children might record in a dotplot the height of beans
(in centimeters) that were grown in the dark (labeled
D) and in the light (labeled L) using a dotplot.
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Figure 4: Dotplot of environment vs. height 

It is obvious from the dotplot that the plants in the 
light environment tend to have greater heights than 
the plants in the dark environment.
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Looking for clusters and gaps in the distribution helps 
students identify the shape of the distribution. Students 
should develop a sense of why a distribution takes on 
a particular shape for the context of the variable being 
considered.
→ Does the distribution have one main cluster 
 (or mound) with smaller groups of similar size 
 on each side of the cluster? If so, the
 distribution might be described as symmetric.
→ Does the distribution have one main cluster 
 with smaller groups on each side that are not 
 the same size? Students may classify this as 
 “lopsided,” or may use the term asymmetrical. 
→ Why does the distribution take this shape? 
 Using the dotplot from above, students will 
 recognize both groups have distributions that 
 are “lopsided,” with the main cluster on the 
 lower end of the distributions and a few values 
 to the right of the main mound. 

Making Use of Available Data

Most children love to eat hot dogs, but are aware that 
too much sodium is not necessarily healthy. Is there 
a difference in the sodium content of beef hot dogs 
(labeled B in Figure 5) and poultry hot dogs (labeled 
P in Figure 5)? To investigate this question, students 
can make use of available data. Using data from the 
June 1993 issue of Consumer Reports magazine, parallel 
dotplots can be constructed.
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Figure 5: Parallel dotplot of sodium content

Students will notice that the distribution of the poultry 
hot dogs has two distinct clusters. What might explain 
the gap and two clusters? It could be another variable, 
such as the price of the poultry hot dogs, with more 
expensive hot dogs having less sodium. It can also 
be observed that the beef sodium amounts are more 
spread out (or vary more) than the poultry hot dogs. 
In addition, it appears the center of the distribution 
for the poultry hot dogs is higher than the center for 
the beef hot dogs.

As students advance to Level B, considering the shape of 
a distribution will lead to an understanding of what mea-
sures are appropriate for describing center and spread.

Describing Center and Spread

Students should understand that the median describes 
the center of a numerical data set in terms of how 
many data points are above and below it. The same 
number of data points (approximately half ) lie to the 
left of the median and to the right of the median. 
Children can create a human graph to show how 
many letters are in their fi rst names. All the children 

“ As students
advance to 
Level B,
considering 
the shape of a 
distribution will 
lead to an
understanding 
of what
measures are 
appropriate for 
describing
center and 
spread.”
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with two-letter names can stand in a line, with all of 
the children having three-letter names standing in 
a parallel line. Once all children are assembled, the 
teacher can ask one child from each end of the graph 
to sit down, repeating this procedure until one child 
is left standing, representing the median. With Level 
A students, we advocate using an odd number of data 
points so the median is clear until students have mas-
tered the idea of a midpoint.

Students should understand the mean as a fair share 
measure of center at Level A. In the name length 
example, the mean would be interpreted as “How 
long would our names be if they were all the same 
length?” This can be illustrated in small groups by 
having children take one snap cube for each letter in 
their name. In small groups, have students put all the 
cubes in the center of the table and redistribute them 
one at a time so each child has the same number. De-
pending on the children’s experiences with fractions, 
they may say the mean name length is 4 R 2 or 4 1/2 
or 4.5. Another example would be for the teacher to 
collect eight pencils of varying lengths from children 
and lay them end-to-end on the chalk rail. Finding the 
mean will answer the question “How long would each 
pencil be if they were all the same length?” That is, 
if we could glue all the pencils together and cut them 
into eight equal sections, how long would each sec-
tion be? This can be modeled using adding machine 
tape (or string), by tearing off a piece of tape that is 
the same length as all eight pencils laid end-to-end. 

Then, fold the tape in half three times to get eighths, 
showing the length of one pencil out of eight pencils 
of equal length. Both of these demonstrations can be 
mapped directly onto the algorithm for fi nding the 
mean: combine all data values (put all cubes in the 
middle, lay all pencils end-to-end and measure, add 
all values) and share fairly (distribute the cubes, fold 
the tape, and divide by the number of data values). 
Level A students should master the computation (by 
hand or using appropriate technology) of the mean so 
more sophisticated interpretations of the mean can be 
developed at Levels B and C.

The mean and median are measures of location for describ-
ing the center of a numerical data set. Determining the 
maximum and minimum values of a numerical data 
set assists children in describing the position of the 
smallest and largest value in a data set. In addition to 
describing the center of a data set, it is useful to know 
how the data vary or how spread out the data are. 

One measure of spread for a distribution is the range, 
which is the difference between the maximum and 
minimum values. Measures of spread only make sense 
with numerical data. 

In looking at the stem and leaf plot formed for the 
jumping distances (Figure 3), the range differs for 
boys (range = 39 inches) and girls (range = 27 inches). 
Girls are more consistent in their jumping distances 
than boys.
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Looking for an Association 

Students should be able to look at the possible associa-
tion of a numerical variable and a categorical variable by com-
paring dotplots of a numerical variable disaggregated 
by a categorical variable. For example, using the paral-
lel dotplots showing the growth habits of beans in the 
light and dark, students should look for similarities 
within each category and differences between the cat-
egories. As mentioned earlier, students should readily 
recognize from the dotplot that the beans grown in 
the light environment have grown taller overall, and 
therefore reason that it is best for beans to have a light 
environment. Measures of center and spread also can 
be compared. For example, students could calculate 
or make a visual estimate of the mean height of the 
beans grown in the light and the beans grown in the 
dark to substantiate their claim that light conditions 
are better for beans. They also might note that the 
range for plants grown in the dark is 4 cm, and 5 cm 
for plants grown in the light. Putting that information 
together with the mean should enable students to fur-
ther solidify their conclusions about the advantages of 
growing beans in the light.

Considering the hot dog data, one general impres-
sion from the dotplot is that there is more variation 
in the sodium content for beef hot dogs. For beef hot 
dogs, the sodium content is between 250 mg and 650 
mg, while for poultry hot dogs, the sodium content 
is between 350 mg and 600 mg. Neither the centers 

nor the shapes for the distributions are obvious from 
the dotplots. It is interesting to note the two apparent 
clusters of data for poultry hot dogs. Nine of the 17 
poultry hot dogs have sodium content between 350 
mg and 450 mg, while eight of the 17 poultry hot dogs 
have sodium content between 500 mg and 600 mg. 
A possible explanation for this division is that some 
poultry hot dogs are made from chicken, while others 
are made from turkey. 

What about the association between two numerical 
variables? Parent-teacher organizations at elementary 
schools have for a popular fund raiser “spirit wear,” 
such as sweatshirts and sweatpants with the school 
name and mascot. The organizers need to have some 
guidelines about how many of each size garment to 
order. Should they offer the shirt and pants separately, 
or offer the sweatshirt and sweatpants as one outfi t? 
Are the heights and arm spans of elementary students 
closely related, or do they differ considerably due to 
individual growing patterns of children? Thus, some 
useful questions to answer are:
Is there an association between height and arm span?
How strong is the association between height and arm span?
A scatterplot can be used to graphically represent data 
when values of two numerical variables are obtained 
from the same individual or object. Can we use height 

Example 3: Purchasing Sweat Suits—The Role of Height and
Arm Span
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to predict a person’s arm span? Students can measure 
each other’s heights and arm spans, and then con-
struct a scatterplot to look for a relationship between 
these two numerical variables. Data on height and arm 
span are measured (in centimeters) for 26 students. 
The data presented below are for college students and 
are included for illustrative purposes.
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Figure 6: Scatterplot of arm span vs. height

With the use of a scatterplot, Level A students can 
visually look for trends and patterns.

For example, in the arm span versus height scatterplot 
above, students should be able to identify the consistent 

relationship between the two variables: generally as 
one gets larger, so does the other. Based on these data, 
the organizers might feel comfortable ordering some 
complete outfi ts of sweatshirt and sweatpants based on 
sizes. However, some students may need to order the 
sweatshirt and sweatpants separately based on sizes. 
Another important question the organizers will need 
to ask is whether this sample is representative of all the 
students in the school. How was the sample chosen? 

Students at Level A also can use a scatterplot to graphi-
cally look at the values of a numerical variable change 
over time, referred to as a time plot. For example, children 
might chart the outside temperature at various times 
during the day by recording the values themselves or by 
using data from a newspaper or the internet.
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Figure 7: Timeplot of temperature vs. time

“ With the
use of a
scatterplot,
Level A
students can 
visually look
for trends and 
patterns.”
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When students advance to Level B, they will quantify 
these trends and patterns with measures of association.

Understanding Variability

Students should explore possible reasons data look the 
way they do and differentiate between variation and error. For 
example, in graphing the colors of candies in a small 
packet, children might expect the colors to be evenly 
distributed (or they may know from prior experience 
that they are not). Children could speculate about why 
certain colors appear more or less frequently due to 
variation (e.g., cost of dyes, market research on peo-
ple’s preferences, etc.). Children also could identify 
possible places where errors could have occurred in 
their handling of the data/candies (e.g., dropped can-
dies, candies stuck in bag, eaten candies, candies given 
away to others, colors not recorded because they don’t 
match personal preference, miscounting). Teachers 
should capitalize on naturally occurring “errors” that hap-
pen when collecting data in the classroom and help 
students speculate about the impact of these errors on the 
fi nal results. For example, when asking students to 
vote for their favorite food, it is common for students 
to vote twice, to forget to vote, to record their vote 
in the wrong spot, to misunderstand what is being 
asked, to change their mind, or to want to vote for 
an option that is not listed. Counting errors are also 
common among young children, which can lead to 
incorrect tallies of data points in categories. Teachers 
can help students think about how these events might 

affect the fi nal outcome if only one person did this, if 
several people did it, or if many people did it. Students 
can generate additional examples of ways errors might 
occur in a particular data-gathering situation. 

The notions of error and variability should be used 
to explain the outliers, clusters, and gaps students ob-
serve in the graphical representations of the data. An 
understanding of error versus natural variability will 
help students interpret whether an outlier is a legiti-
mate data value that is unusual or whether the outlier 
is due to a recording error.

At Level A, it is imperative that students begin to un-
derstand the concept of variability. As students move 
from Level A to Level B to Level C, it is important to 
always keep at the forefront that understanding variability 
is the essence of developing data sense. 

The Role of Probability

Level A students need to develop basic ideas of prob-
ability in order to support their later use of probability 
in drawing inferences at Levels B and C. 

At Level A, students should understand that prob-
ability is a measure of the chance that something will happen. 
It is a measure of certainty or uncertainty. Events should 
be seen as lying on a continuum from impossible to 
certain, with less likely, equally likely, and more likely 
lying in between. Students learn to informally assign 
numbers to the likelihood that something will occur. 



34

An example of assigning numbers on a number line is 
given below:

0 ¼ ½ ¾

Impos- Unlikely Equally Likely Certain
sible or less likely to or more 

likely occur likely
and not 

occur

Students should have experiences estimating probabilities 
using empirical data. Through experimentation (or simu-
lation), students should develop an explicit under-
standing of the notion that the more times you repeat 
a random phenomenon, the closer the results will be 
to the expected mathematical model. At Level A, we 
are considering only simple models based on equally 
likely outcomes or, at the most, something based on 
this, such as the sum of the faces on two number 
cubes. For example, very young children can state 
that a penny should land on heads half the time and 
on tails half the time when fl ipped. The student has 
given the expected model and probability for tossing a 
head or tail, assuming that the coin is “fair.” 

If a child fl ips a penny 10 times to obtain empiri-
cal data, it is quite possible he or she will not get 
fi ve heads and fi ve tails. However, if the child fl ips 
the coin hundreds of times, we would expect to see 
that results will begin stabilizing to the expected 
probabilities of .5 for heads and .5 for tails. This 
is known as the Law of Large Numbers. Thus, at 

1

Level A, probability experiments should focus on 
obtaining empirical data to develop relative frequency 
interpretations that children can easily translate to 
models with known and understandable “mathemati-
cal” probabilities. The classic fl ipping coins, spinning 
simple spinners, and tossing number cubes are reliable 
tools to use in helping Level A students develop an 
understanding of probability. The concept of relative 
frequency interpretations will be important at Level 
B when the student works with proportional reason-
ing—going from counts or frequencies to propor-
tions or percentages.

As students work with results from repeating random 
phenomena, they can develop an understanding for 
the concept of randomness. They will see that when fl ip-
ping a coin 10 times, although we would expect fi ve 
heads and fi ve tails, the actual results will vary from 
one student to the next. They also will see that if a 
head results on one toss, that doesn’t mean the next 
fl ip will result in a tail. Because coin tossing is a ran-
dom experiment, there is always uncertainty as to how 
the coin will land from one toss to the next. However, 
at Level A, students can begin to develop the notion 
that although we have uncertainty and variability in 
our results, by examining what happens to the ran-
dom process in the long run, we can quantify the un-
certainty and variability with probabilities—giving a 
predictive number for the likelihood of an outcome 
in the long run. At Level B, students will see the role 
probability plays in the development of the concept 
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of the simple random sample and the role probability 
plays with randomness.

Misuses of Statistics

The Level A student should learn that proper use of 
statistical terminology is as important as the proper 
use of statistical tools. In particular, the proper use of 
the mean and median should be emphasized. These 
numerical summaries are appropriate for describing 
numerical variables, not categorical variables. For 
example, when collecting categorical data on favorite 
type of music, the number of children in the sample 
who prefer each type of music is summarized as a 
frequency. It is easy to confuse categorical and nu-
merical data in this case and try to fi nd the mean or 
median of the frequencies for favorite type of music. 
However, one cannot use the frequency counts to 
compute a mean or median for a categorical variable. 
The frequency counts are the numerical summary for 
the categorical variable.

Another common mistake for the Level A student is 
the inappropriate use of a bar graph with numerical 
data. A bar graph is used to summarize categori-
cal data. If a variable is numerical, the appropriate 
graphical display with bars is called a histogram, which 
is introduced in Level B. At Level A, appropriate 
graphical displays for numerical data are the dotplot 
and the stem and leaf plot. 

Summary of Level A

If students become comfortable with the ideas and 
concepts described above, they will be prepared to 
further develop and enhance their understanding of 
the key concepts for data sense at Level B. 

It is also important to recognize that helping 
students develop data sense at Level A allows 
mathematics instruction to be driven by data. The 
traditional mathematics strands of algebra, func-
tions, geometry, and measurement all can be de-
veloped with the use of data. Making sense of data 
should be an integrated part of the mathematics 
curriculum, starting in pre-kindergarten.
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Level B
Instruction at Level B should build on the statisti-

cal base developed at Level A and set the stage 
for statistics at Level C. Instructional activities at 

Level B should continue to emphasize the four main 
components in the investigative process and have 
the spirit of genuine statistical practice. Students 
who complete Level B should see statistical reason-
ing as a process for solving problems through data 
and quantitative reasoning.

At Level B, students become more aware of the statisti-
cal question distinction (a question with an answer based 
on data that vary versus a question with a deterministic 
answer). They also should make decisions about what 
variables to measure and how to measure them in or-
der to address the question posed.
Students should use and expand the graphical, tabu-
lar, and numerical summaries introduced at Level A to 
investigate more sophisticated problems. Also, when 
selecting a sample, students should develop a basic 
understanding of the role probability plays in random 
selection—and in random assignment when conduct-
ing an experiment.
At Level B, students investigate problems with more 
emphasis placed on possible associations among two 
or more variables and understand how a more sophis-
ticated collection of graphical, tabular, and numerical 
summaries is used to address these questions. Finally, 
students recognize ways in which statistics is used or 
misused in their world.

Specifi cally, Level B recommendations in the Investiga-
tive Process include:

I. Formulate Questions

→ Students begin to pose their own questions.
→ Students address questions involving a group 
 larger than their classroom and begin to
 recognize the distinction among a population, a 
 census, and a sample.

II. Collect Data

→ Students conduct censuses of two or more 
 classrooms.
→ Students design and conduct nonrandom 
 sample surveys and begin to use random
 selection.
→ Students design and conduct comparative
 experiments and begin to use random assignment.

III. Analyze Data

→ Students expand their understanding of a data 
 distribution.
→ Students quantify variability within a group.
→ Students compare two or more distributions 
 using graphical displays and numerical summaries.
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→ Students use more sophisticated tools for 
 summarizing and comparing distributions, 
 including:
 ▪ Histograms
 ▪ The IQR (Interquartile Range) and MAD  
  (Mean Absolute Deviation)
 ▪ Five-Number Summaries and boxplots
→ Students acknowledge sampling error.
→ Students quantify the strength of association 
 between two variables, develop simple models 
 for association between two numerical
 variables, and use expanded tools for
 exploring association, including:
 ▪ Contingency tables for two categorical  
  variables
 ▪ Time series plots
 ▪ The QCR (Quadrant Count Ratio) as a  
  measure of strength of association
 ▪ Simple lines for modeling association be- 
  tween two numerical variables

IV. Interpret Results

→ Students describe differences between two 
 or more groups with respect to center, spread, 
 and shape.
→ Students acknowledge that a sample may not 
 be representative of a larger population.
→ Students understand basic interpretations of 
 measures of association.

→ Students begin to distinguish between an
 observational study and a designed experiment.
→ Students begin to distinguish between
 “association” and “cause and effect.”
→ Students recognize sampling variability in 
 summary statistics, such as the sample mean 
 and the sample proportion.

Many of the graphical, tabular, and numerical sum-
maries introduced at Level A can be enhanced and 
used to investigate more sophisticated problems at 
Level B. Let’s revisit the problem of planning for 
the school dance introduced in Level A, in which, 
by conducting a census of the class, a Level A class 
investigated the question:
What type of music is most popular among students? 

Recall that the class was considered to be the entire 
population, and data were collected on every member 
of the population. A similar investigation at Level B 
would include recognition that one class may not be 
representative of the opinions of all students at the 
school. Level B students might want to compare the 
opinions of their class with the opinions of other 
classes from their school. A Level B class might inves-
tigate the questions:

What type of music is most popular among students at our school?

Example 1, Level A Revisited: Choosing a Band
for the School Dance
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How do the favorite types of music differ between classes?

As class sizes may be different, results should be sum-
marized with relative frequencies or percents in order 
to make comparisons. Percentages are useful in that 
they allow us to think of having comparable results 
for groups of size 100. Level B students will see more 
emphasis on proportional reasoning throughout the 
mathematics curriculum, and they should be comfort-
able summarizing and interpreting data in terms of 
percents or fractions.

Table 3: Frequencies and Relative Frequencies

Class 1

Favorite Frequency Relative
Frequency
Percentage

Country   8    33%

Rap 12    50%

Rock   4    17%

Total 24 100%

Class 2

Favorite Frequency Relative
Frequency
Percentage

Country   5    17%

Rap 11    37%

Rock 14    47%

Total 30 101%

The results from two classes are summarized in Table 3 
using both frequency and relative frequency (percents). 

The bar graph below compares the percent of each 
favorite music category for the two classes.

Figure 8: Comparative bar graph for music preferences
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Students at Level B should begin to recognize that 
there is not only variability from one individual to 
another within a group, but also in results from one 
group to another. This second type of variability is il-
lustrated by the fact that the most popular music is rap 
music in Class 1, while it is rock music in Class 2. That 
is, the mode for Class 1 is rap music, while the mode 
for Class 2 is rock music.

The results from the two samples might be com-
bined in order to have a larger sample of the entire 
school. The combined results indicate rap music is 
the favorite type of music for 43% of the students, 



40

rock music is preferred by 33%, while only 24% of 
the students selected country music as their favorite. 
Level B students should recognize that although this 
is a larger sample, it still may not be representative of 
the entire population (all students at their school). In 
statistics, randomness and probability are incorpo-
rated into the sample selection procedure in order 
to provide a method that is “fair” and to improve 
the chances of selecting a representative sample. For 
example, if the class decides to select what is called a 
simple random sample of 54 students, then each pos-
sible sample of 54 students has the same probability 
of being selected. This application illustrates one of 
the roles of probability in statistics. Although Level 
B students may not actually employ a random selec-
tion procedure when collecting data, issues related to 
obtaining representative samples should be discussed 
at this level.

Connecting Two Categorical Variables

As rap was the most popular music for the two com-
bined classes, the students might argue for a rap group 
for the dance. However, more than half of those sur-
veyed preferred either rock or country music. Will 
these students be unhappy if a rap band is chosen? 
Not necessarily, as many students who like rock music 
also may like rap music. To investigate this problem, 
students might explore two additional questions:
Do students who like rock music tend to like or dislike rap music?

Do students who like country music tend to like or dislike rap music?

To address these questions, the survey should ask stu-
dents not only their favorite type of music, but also 
whether they like rap, rock, and country music.

The two-way frequency table (or contingency table) below 
provides a way to investigate possible connections 
between two categorical variables. 

Table 4: Two-Way Frequency Table

Like Rap Music?

Row Yes                No

Like Rock Yes
Music? No

Column Totals

27 6

4 17

31 23

Totals

33

21

54

According to these results, of the 33 students who 
liked rock music, 27 also liked rap music. That is, 
82% (27/33) of the students who like rock music 
also like rap music. This indicates that students who 
like rock music tend to like rap music as well. Once 
again, notice the use of proportional reasoning in 
interpreting these results. A similar analysis could be 
performed to determine if students who like country 
tend to like or dislike rap music. A more detailed 
discussion of this example and a measure of associa-
tion between two categorical variables is given in the 
Appendix for Level B.

“ With the
use of a  
scatterplo t, 
Level A  
students can 
visually lo ok 
for trends and 

patterns. ”



Questionnaires and Their Diffi culties

At Level B, students should begin to learn about sur-
veys and the many pitfalls to avoid when designing 
and conducting them. One issue involves the wording 
of questions. Questions must be unambiguous and 
easy to understand. For example, the question:
Are you against the school implementing a no-door policy on 
bathroom stalls? 

is worded in a confusing way. An alternative way to 
pose this question is:
The school is considering implementing a no-door policy on bath-
room stalls. What is your opinion regarding this policy?
Strongly Oppose Oppose No Opinion Support Strongly Support

Questions should avoid leading the respondent to an 
answer. For example, the question: 
Since our football team hasn’t had a winning season in 20 years 
and is costing the school money, rather than generating funds, 
do you feel we should concentrate more on another sport, such as 
soccer or basketball? 

is worded in a way that is biased against the football team.

The responses to questions with coded responses 
should include all possible answers, and the answers 
should not overlap. For example, for the question:
How much time do you spend studying at home on a typical night? 

the responses:
none 1 hour or less 1 hour or more

would confuse a student who spends one hour a 
night studying. 

There are many other considerations about question 
formulation and conducting sample surveys that can 
be introduced at Level B. Two such issues are how the 
interviewer asks the questions and how accurately the 
responses are recorded. It is important for students to 
realize that the conclusions from their study depend 
on the accuracy of their data. 

Measure of Location—The Mean as a
Balance Point

Another idea developed at Level A that can be ex-
panded at Level B is the mean as a numerical sum-
mary of center for a collection of numerical data. At 
Level A, the mean is interpreted as the “fair share” 
value for data. That is, the mean is the value you 
would get if all the data from subjects are combined 
and then evenly redistributed so each subject’s value is 
the same. Another interpretation of the mean is that it 
is the balance point of the corresponding data distri-
bution. Here is an outline of an activity that illustrates 
the notion of the mean as a balance point. Nine stu-
dents were asked:
How many pets do you have?

The resulting data were 1, 3, 4, 4, 4, 5, 7, 8, 9. These 
data are summarized in the dotplot shown in Figure 
9. Note that in the actual activity, stick-on notes were 
used as “dots” instead of Xs.

At Level A, 
the mean is 
interpreted as 
the ‘fair share’ 
value for data.

“

”
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X XX

X
X

X X X X

1 52 3 4 6

Figure 9: Dotplot for pet count

If the pets are combined into one group, there are a 
total of 45 pets. If the pets are evenly redistributed 
among the nine students, then each student would get 
fi ve pets. That is, the mean number of pets is fi ve. The 
dotplot representing the result that all nine students 
have exactly fi ve pets is shown below:

X
X
X
X
X
X
X
X
X

7 8 9

1 5 6 7 8432 9

It is hopefully obvious that if a pivot is placed at the 
value 5, then the horizontal axis will “balance” at this 
pivot point. That is, the “balance point” for the hori-
zontal axis for this dotplot is 5. What is the balance 
point for the dotplot displaying the original data? 

We begin by noting what happens if one of the dots 
over 5 is removed and placed over the value 7, as 
shown below: 

X

X
X

X

X
X

X

X
X

1 432 5 6 7 8 9

Clearly, if the pivot remains at 5, the horizontal axis 
will tilt to the right. What can be done to the remain-
ing dots over 5 to “rebalance” the horizontal axis 
at the pivot point? Since 7 is two units above 5, one 
solution is to move a dot two units below 5 to 3, as 
shown below:

1 432 5 6 7

X

X
X

X

X
X

X

X X

8 9

Figure 10: Dotplot showing pets evenly distributed

Figure 11: Dotplot with one data point moved

Figure 12: Dotplot with two data points moved
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The horizontal axis is now rebalanced at the pivot 
point. Is this the only way to rebalance the axis at 
5? No. Another way to rebalance the axis at the 
pivot point would be to move two dots from 5 to 4, 
as shown below:

X
X
X
X

X X
X XX

1 2 3 4 5 6 7 8 9

  
Figure 13: Dotplot with different data points moved

The horizontal axis is now rebalanced at the pivot point. 
That is, the “balance point” for the horizontal axis for 
this dotplot is 5. Replacing each “X” (dot) in this plot 
with the distance between the value and 5, we have:

0
0
0
0

1 0
1 20

1 2 3 4 5 6 7 8 9

Figure 14: Dotplot showing distance from 5

Notice that the total distance for the two values below 
the 5 (the two 4s) is the same as the total distance for 

the one value above the 5 (the 7). For this reason, the 
balance point of the horizontal axis is 5. Replacing 
each value in the dotplot of the original data by its 
distance from 5 yields the following plot:

4

1

20 34
1
12

1 2 3 4 5 6 7 8 9

Figure 15: Dotplot showing original data and distance 
from 5

The total distance for the values below 5 is 9, the 
same as the total distance for the values above 5. For 
this reason, the mean (5) is the balance point of the 
horizontal axis. 

Both the mean and median often are referred to as 
measures of central location. At Level A, the median also 
was introduced as the quantity that has the same num-
ber of data values on each side of it in the ordered data. 
This “sameness of each side” is the reason the median 
is a measure of central location. The previous activity 
demonstrates that the total distance for the values be-
low the mean is the same as the total distance for the 
values above the mean, and illustrates why the mean 
also is considered to be a measure of central location. 
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A Measure of Spread—The Mean Absolute 
Deviation

Statistics is concerned with variability in data. One 
important idea is to quantify how much variability ex-
ists in a collection of numerical data. Quantities that 
measure the degree of variability in data are called 
measures of spread. At Level A, students are introduced 
to the range as a measure of spread in numerical data. 
At Level B, students should be introduced to the idea 
of comparing data values to a central value, such as 
the mean or median, and quantifying how different 
the data are from this central value.

In the number of pets example, how different are the 
original data values from the mean? One way to mea-
sure the degree of variability from the mean is to de-
termine the total distance of all values from the mean. 
Using the fi nal dotplot from the previous example, the 
total distance the nine data values are from the mean 
of 5 pets is 18 pets. The magnitude of this quantity 
depends on several factors, including the number of 
measurements. To adjust for the number of measure-
ments, the total distance from the mean is divided by 
the number of measurements. The resulting quantity 
is called the Mean Absolute Deviation, or MAD. The 
MAD is the average distance of each data value from 
the mean. That is:

MAD =
 Total Distance from the Mean for all Values

        Number of Data Values

The MAD for the data on number of pets from the 
previous activity is:

MAD = 18/9 = 2

The MAD indicates that the actual number of pets for 
the nine students differs from the mean of fi ve pets by 
two pets, on average. Kader (1999) gives a thorough 
discussion of this activity and the MAD. 

The MAD is an indicator of spread based on all the 
data and provides a measure of average variation in 
the data from the mean. The MAD also serves as a 
precursor to the standard deviation, which will be 
developed at Level C.

Representing Data Distributions—
The Frequency Table and Histogram

At Level B, students should develop additional tabular 
and graphical devices for representing data distribu-
tions of numerical variables. Several of these build 
upon representations developed at Level A. For ex-
ample, students at Level B might explore the problem 
of placing an order for hats. To prepare an order, one 
needs to know which hat sizes are most common and 
which occur least often. To obtain information about 
hat sizes, it is necessary to measure head circumfer-
ences. European hat sizes are based on the metric 
system. For example, a European hat size of 55 is 
designed to fi t a person with a head circumference of  
between 550 mm and 559 mm. In planning an order 



45

for adults, students might collect preliminary data on 
the head circumferences of their parents, guardians, 
or other adults. Such data would be the result of a 
nonrandom sample. The data summarized in the fol-
lowing stemplot (also known as stem and leaf plot) are 
head circumferences measured in millimeters for a 
sample of 55 adults.

 51 | 3

 52 | 5

 53 | 133455

 54 | 2334699

 55 | 12222345

 56 | 0133355588

 57 | 113477

 58 | 02334458

 59 | 1558

 60 | 13

 61 | 28

51 | 3 means 513 mm

Figure 16: Stemplot of head circumference

Based on the stemplot, some head sizes do appear to 
be more common than others. Head circumferences 
in the 560s are most common. Head circumferences 
fall off in a somewhat symmetric manner on both 

sides of the 560s, with very few smaller than 530 mm 
or larger than 600 mm.

In practice, a decision of how many hats to order would 
be based on a much larger sample, possibly hundreds 
or even thousands of adults. If a larger sample was 
available, a stemplot would not be a practical device 
for summarizing the data distribution. An alternative 
to the stemplot is to form a distribution based on di-
viding the data into groups or intervals. This method 
can be illustrated through a smaller data set, such as 
the 55 head circumferences, but is applicable for larger 
data sets as well. The grouped frequency and grouped relative 
frequency distributions and the relative frequency histogram 
that correspond to the above stemplot are:

510 530 550 570 590 610

5

10

15

20

Head Circumference (mm)

Figure 17: Relative frequency histogram
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Table 5: Grouped Frequency and Grouped Relative Frequency Distributions

Stem Limits on Recorded 
Measurements

on Head
Circumference

Interval of
Actual Head

Circumferences

Frequency Relative Frequency 
(%)

51 510–519 510–<520   1   1.8

52 520–529 520–<530   1   1.8

53 530–539 530–<540   6 10.9

54 540–549 540–<550   7 12.7

55 550–559 550–<560   8 14.5

56 560–569 560–<570 10 18.2

57 570–579 570–<580   6 10.9

58 580–589 580–<590   8 14.5

59 590–599 590–<600   4   7.3

60 600–609 600–<610   2   3.6

61 610–619 610–<620

Total

  2

55

  3.6

99.8

If the hat manufacturer requires that orders be in 
multiples of 250 hats, then based on the above re-
sults, how many hats of each size should be ordered? 
Using the relative frequency distribution, the num-
ber of hats of each size for an order of 250 hats is 
shown in Table 6.

Once again, notice how students at Level B would uti-
lize proportional reasoning to determine the number 
of each size to order. Kader and Perry (1994) give a 
detailed description of “The Hat Shop” problem.

Comparing Distributions—The Boxplot

Problems that require comparing distributions for 
two or more groups are common in statistics. For 
example, at Level A students compared the amount 
of sodium in beef and poultry hot dogs by examining 
parallel dotplots. At Level B, more sophisticated rep-
resentations should be developed for comparing dis-
tributions. One of the most useful graphical devices 
for comparing distributions of numerical data is the 
boxplot. The boxplot (also called a box-and-whiskers 



47

Table 6: Hat Size Data

Hat Size Number to Order

51   5

52   5

53 27

54 32

55 36

56 46

57 27

58 36

59 18

60   9

61   9

plot) is a graph based on a division of the ordered data 
into four groups, with the same number of data values 
in each group (approximately one-fourth). The four 
groups are determined from the Five-Number Summary 
(the minimum data value, the fi rst quartile, the me-
dian, the third quartile, and the maximum data value). 
The Five-Number Summaries and comparative box-
plots for the data on sodium content for beef (labeled 
B) and poultry (labeled P) hot dogs introduced in
Level A are given in Table 7 and Figure 18.

Interpreting results based on such an analysis requires 
comparisons based on global characteristics of each 
distribution (center, spread, and shape). For example, 
the median sodium content for poultry hot dogs is 

Table 7: Five-Number Summaries for Sodium Content

Beef Hot Dogs Poultry Hot 
(n = 20) Dogs (n = 17)

Minimum 253 357

First Quartile    320.5 379

Median    380.5 430

Third Quartile 478 535

Maximum 645 588

250 300 350 400 450 500 550 600 650

B&P Hot Dogs

Ty
p

e
B

P

Sodium (mg)

Figure 18: Boxplot for sodium content

430 mg, almost 50 mg more than the median sodium 
content for beef hot dogs. The medians indicate that 
a typical value for the sodium content of poultry hot 
dogs is greater than a typical value for beef hot dogs. 
The range for the beef hot dogs is 392 mg, versus 
231 mg for the poultry hot dogs. The ranges indi-
cate that, overall, there is more spread (variation) in 
the sodium content of beef hot dogs than poultry hot 
dogs. Another measure of spread that should be in-
troduced at Level B is the interquartile range, or IQR. 
The IQR is the difference between the third and fi rst 
quartiles, and indicates the range of the middle 50% of 
the data. The IQRs for sodium content are 157.5 mg for 
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beef hot dogs and 156 mg for poultry hot dogs. The 
IQRs suggest that the spread within the middle half 
of data for beef hot dogs is similar to the spread with-
in the middle half of data for poultry hot dogs. The 
boxplots also suggest that each distribution is some-
what skewed right. That is, each distribution appears 
to have somewhat more variation in the upper half. 
Considering the degree of variation in the data and 
the amount of overlap in the boxplots, a difference 
of 50 mg between the medians is not really that large. 
Finally, it is interesting to note that more than 25% of 
beef hot dogs have less sodium than all poultry hot 
dogs. On the other hand, the highest sodium levels 
are for beef hot dogs. 

Note that there are several variations of boxplots. At 
Level C, performing an analysis using boxplots might 
include a test for outliers (values that are extremely large 
or small when compared to the variation in the major-
ity of the data). If outliers are identifi ed, they often are 
detached from the “whiskers” of the plot. Outlier anal-
ysis is not recommended at Level B, so whiskers extend 
to the minimum and maximum data values. However, 
Level B students may encounter outliers when using 
statistical software or graphing calculators. 

Measuring the Strength of Association
between Two Quantitative Variables

At Level B, more sophisticated data representations 
should be developed for the investigation of problems 

Table 8: Height and Arm Span Data

Height Arm Span Height Arm Span

155 151 173 170

162 162 175 166

162 161 176 171

163 172 176 173

164 167 178 173

164 155 178 166

165 163 181 183

165 165 183 181

166 167 183 178

166 164 183 174

168 165 183 180

171 164 185 177

171 168 188 185

that involve the examination of the relationship be-
tween two numeric variables. At Level A, the problem 
of packaging sweat suits (shirt and pants together or 
separate) was examined through a study of the re-
lationship between height and arm span. There are 
several statistical questions related to this problem 
that can be addressed at Level B with a more in-depth 
analysis of the height/arm span data. For example: 
How strong is the association between height and arm span?
Is height a useful predictor of arm span?
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Figure 19: Scatterplot of arm span vs. height

Table 8 provides data on height and arm span (mea-
sured in centimeters) for 26 students. For convenience, 
the data on height have been ordered.

The height and arm span data are displayed in Figure 19. 
The scatterplot suggests a fairly strong increasing rela-
tionship between height and arm span. In addition, the 
relationship appears to be quite linear.

Measuring the strength of association between two 
variables is an important statistical concept that should 
be introduced at Level B. The scatterplot in Figure 
20 for the height/arm span data includes a vertical 
line drawn through the mean height (x = 172.5) and 
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Figure 20: Scatterplot showing means

a horizontal line drawn through the mean arm span
( y = 169.3).

The two lines divide the scatterplot into four regions 
(or quadrants). The upper right region (Quadrant 1) 
contains points that correspond to individuals with 
above average height and above average arm span. 
The upper left region (Quadrant 2) contains points 
that correspond to individuals with below average 
height and above average arm span. The lower left 
region (Quadrant 3) contains points that correspond 
to individuals with below average height and below 
average arm span. The lower right region (Quadrant 
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4) contains points that correspond to individuals with 
above average height and below average arm span.

Notice that most points in the scatterplot are in either 
Quadrant 1 or Quadrant 3. That is, most people with 
above average height also have above average arm 
span (Quadrant 1) and most people with below aver-
age height also have below average arm span (Quad-
rant 3). One person has below average height with 
above average arm span (Quadrant 2) and two people 
have above average height with below average arm 
span (Quadrant 4). These results indicate that there is 
a positive association between the variables height and arm 
span. Generally stated, two numeric variables are posi-
tively associated when above average values of one vari-
able tend to occur with above average values of the 
other and when below average values of one variable 
tend to occur with below average values of the other. 
Negative association between two numeric variables oc-
curs when below average values of one variable tend 
to occur with above average values of the other and 
when above average values of one variable tend to oc-
cur with below average values of the other.

A correlation coeffi cient is a quantity that measures the 
direction and strength of an association between 
two variables. Note that in the previous example, 
points in Quadrants 1 and 3 contribute to the positive 
association between height and arm span, and there is 
a total of 23 points in these two quadrants. Points in 
Quadrants 2 and 4 do not contribute to the positive 

association between height and arm span, and there 
is a total of three points in these two quadrants. One 
correlation coeffi cient between height and arm span is 
given by the QCR (Quadrant Count Ratio):
  

QCR =  
23 – 3 

= .77
    26     

A QCR of .77 indicates that there is a fairly strong 
positive association between the two variables height 
and arm span. This indicates that a person’s height is a 
useful predictor of his/her arm span.

In general, the QCR is defi ned as: 

The QCR has the following properties:
(Number of Points in Quadrants 1 and 3)

– (Number of Points in Quadrants 2 and 4)

Number of Points in all Four Quadrants

→ The QCR is unitless.
→ The QCR is always between –1 and +1 inclusive.

Holmes (2001) gives a detailed discussion of the 
QCR. A similar correlation coeffi cient for 2x2 con-
tingency tables is described in Conover (1999) and 
discussed in the Appendix for Level B. The QCR is 
a measure of the strength of association based on 
only the number of points in each quadrant and, 
like most summary measures, has its shortcomings. 
At Level C, the shortcomings of the QCR can be 

“ A correlation 
coefficient is 
a quantity that 
measures the 
direction and 
strength of
an association 
between two 
variables.”
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addressed and used as foundation for developing 
Pearson’s correlation coeffi cient.

Modeling Linear Association

The height/arm span data were collected at Level A in 
order to study the problem of packaging sweat suits. 
Should a shirt and pants be packaged separately or 
together? A QCR of .77 suggests a fairly strong posi-
tive association between height and arm span, which 
indicates that height is a useful predictor of arm span 
and that a shirt and pants could be packaged together. 
If packaged together, how can a person decide which 
size sweat suit to buy? Certainly, the pant-size of a 
sweat suit depends on a person’s height and the shirt-
size depends on a person’s arm span. As many people 
know their height, but may not know their arm span, 
can height be used to help people decide which size 
sweat suit they wear? Specifi cally:
Can the relationship between height and arm span be described 
using a linear function?

Students at Level B will study linear relationships 
in other areas of their mathematics curriculum. The 
degree to which these ideas have been developed 
will determine how we might proceed at this point. 
For example, if students have not yet been intro-
duced to the equation of a line, then they simply 
might draw a line through the “center of the data” 
as shown in Figure 21.

Figure 21: Eyeball line

This line can be used to predict a person’s arm span 
if his or her height is known. For example, to predict 
the arm span for a person who is 170 cm tall, a verti-
cal segment is drawn up from the X-axis at Height = 
170. At the point this vertical segment intersects the 
segment, a horizontal line is drawn to the Y-axis. The 
value where this horizontal segment intersects the Y-
axis is the predicted arm span. Based on the graph 
above, it appears that we would predict an arm span of 
approximately 167 cm for a person who is 170 cm tall. 

If students are familiar with the equation for a line 
and know how to fi nd the equation from two points, 
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then they might use the Mean – Mean line, which is 
determined as follows. Order the data according to the 
X-coordinates and divide the data into two “halves”
based on this ordering. If there is an odd number of
measurements, remove the middle point from the
analysis. Determine the means for the X-coordinates
and Y-coordinates in each half and fi nd the equation
of the line that passes through these two points. Using
the previous data:

Lower Half (13 Points) Upper Half (13 Points)

Mean Height = 164.8 Mean Height = 180.2

Mean Arm Span = 163.4 Mean Arm Span = 175.2

The equation of the line that goes through the points 
(164.8, 163.4) and (180.2, 175.2) is Predicted Arm Span 
≈ 37.1 + .766(Height). This equation can be used to 
predict a person’s height more accurately than an eye-
ball line. For example, if a person is 170 cm tall, then 
we would predict his/her height to be approximately 
37.1 + .766(170) = 167.3 cm. A more sophisticated ap-
proach (least squares) to determine a “best-fi tting” 
line through the data will be introduced in Level C.

The Importance of Random Selection

In statistics, we often want to extend results beyond 
a particular group studied to a larger group, the 
population. We are trying to gain information about the 
population by examining a portion of the population, 

called a sample. Such generalizations are valid only if 
the data are representative of that larger group. A rep-
resentative sample is one in which the relevant char-
acteristics of the sample members are generally the 
same as those of the population. Improper or biased 
sample selection tends to systematically favor certain 
outcomes, and can produce misleading results and 
erroneous conclusions. 

Random sampling is a way to remove bias in sam-
ple selection, and tends to produce representative 
samples. At Level B, students should experience the 
consequences of nonrandom selection and develop a 
basic understanding of the principles involved in ran-
dom selection procedures. Following is a description 
of an activity that allows students to compare sample 
results based on personal (nonrandom) selection ver-
sus sample results based on random selection. 

Consider the 80 circles on the next page. What is the 
average diameter for these 80 circles? Each student 
should take about 15 seconds and select fi ve circles 
that he/she thinks best represent the sizes of the 
80 circles. After selecting the sample, each student 
should fi nd the average diameter for the circles in 
her/his personal sample. Note that the diameter is 1 
cm for the small circles, 2 cm for the medium-sized 
circles, and 3 cm for the large circles. 

Next, each student should number the circles from 
one to 80 and use a random digit generator to select a 
random sample of size fi ve. Each student should fi nd 
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Figure 22: Eighty circles
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the average diameter for the circles in his/her random 
sample. The sample mean diameters for the entire 
class can be summarized for the two selection proce-
dures with back-to-back stemplots. 

How do the means for the two sample selection pro-
cedures compare with the true mean diameter of 1.25 
cm? Personal selection usually will tend to yield sam-
ple means that are larger than 1.25. That is, personal 
selection tends to be biased with a systematic favoring 
toward the larger circles and an overestimation of the 
population mean. Random selection tends to produce 
some sample means that underestimate the popula-
tion mean and some that overestimate the population 
mean, such that the sample means cluster somewhat 
evenly around the population mean value (i.e., ran-
dom selection tends to be unbiased ).

In the previous example, the fact that the sample 
means vary from one sample to another illustrates an 
idea that was introduced earlier in the favorite music 
type survey. This is the notion of sampling variability. 
Imposing randomness into the sampling procedure 
allows us to use probability to describe the long-run be-
havior in the variability of the sample means resulting 
from random sampling. The variation in results from 
repeated sampling is described through what is called 
the sampling distribution. Sampling distributions will be 
explored in more depth at Level C.

Comparative Experiments

Another important statistical method that should 
be introduced at Level B is comparative experimental 
studies. Comparative experimental studies involve 
comparisons of the effects of two or more treatments 
(experimental conditions) on some response variable. 
At Level B, studies comparing two treatments are 
adequate. For example, students might want to study 
the effects of listening to rock music on one’s ability 
to memorize. Before undertaking a study such as this, 
it is important for students to have the opportunity 
to identify and, as much as possible, control for any 
potential extraneous sources that may interfere with 
our ability to interpret the results. To address these 
issues, the class needs to develop a design strategy for 
collecting appropriate experimental data. 

One simple experiment would be to randomly divide the 
class into two equal-sized (or near equal-sized) groups. 
Random assignment provides a fair way to assign stu-
dents to the two groups because it tends to average out 
differences in student ability and other characteristics 
that might affect the response. For example, suppose 
a class has 28 students. The 28 students are randomly 
assigned into two groups of 14. One way to accom-
plish this is to place 28 pieces of paper in a box—14 
labeled “M” and 14 labeled “S.” Mix the contents in 
the box well and have each student randomly choose a 
piece of paper. The 14 Ms will listen to music and the 
14 Ss will have silence.
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Table 9: Five-Number Summaries

Music Silence

Minimum   3   6

First Quartile

Median

  6

  7

  8

10

Third Quartile

Maximum

  9

15

12

14

Each student will be shown a list of words. Rules for 
how long students have to study the words and how 
long they have to reproduce the words must be deter-
mined. For example, students may have two minutes 
to study the words, a one-minute pause, and then two 
minutes to reproduce (write down) as many words as 
possible. The number of words remembered under 
each condition (listening to music or silence) is the 
response variable of interest. 

The Five-Number Summaries and comparative box-
plots for a hypothetical set of data are shown in Table 9 
and Figure 23. These results suggest that students gen-
erally memorize fewer words when listening to music 
than when there is silence. With the exception of the 
maximum value in the music group (which is classi-
fi ed as an outlier), all summary measures for the music 
group (labeled M in Figure 23) are lower than the cor-
responding summary measures for the silence group 
(labeled S in Figure 23). Without the outlier, the de-
gree of variation in the scores appears to be similar for 
both groups. Distribution S appears to be reasonably

Memory Experiment
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Figure 23: Boxplot for memory data

symmetric, while distribution M is slightly right-
skewed. Considering the degree of variation in the 
scores and the separation in the boxplots, a difference 
of three between the medians is quite large.

Time Series

Another important statistical tool that should be in-
troduced at Level B is a time series plot. Problems that 
explore trends in data over time are quite common. 
For example, the populations of the United States and 
the world continue to grow, and there are several fac-
tors that affect the size of a population, such as the 
number of births and the number of deaths per year. 
One question we ask is:
How has the number of live births changed over the past 30 years?

The U.S. Census Bureau publishes vital statistics in its 
annual Statistical Abstract of the United States. The data 
below are from The Statistical Abstract of the United States 
(2004–2005) and represent the number of live births 
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Table 10: Live Birth Data

Year Births Year Births
(x 1,000) (x 1,000)

1970 3,731 1985 3,761

1971 3,556 1986 3,757

1972 3,258 1987 3,809

1973 3,137 1988 3,910

1974 3,160 1989 4,041

1975 3,144 1990 4,158

1976 3,168 1991 4,111

1977 3,327 1992 4,065

1978 3,333 1993 4,000

1979 3,494 1994 3,979

1980 3,612 1995 3,900

1981 3,629 1996 3,891

1982 3,681 1997 3,881

1983 3,639 1998 3,942

1984 3,669 1999 3,959

per year (in thousands) for residents of the United 
States since 1970. Note that, in 1970, the value 3,731 
represents 3,731,000 live births.

The time series plot in Figure 24 shows the number of 
live births over time. This graph indicates that:
→ from 1970 to 1975, the number of live births 
 generally declined 
→ from 1976 to 1990, the number of live births 
 generally increased

→ from 1991 to 1997, the number of live births 
 generally declined

And it appears that the number of live births may have 
started to increase since 1997.
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Figure 24: Time series plot of live births

Misuses of Statistics

The introduction of this document points out that 
data govern our lives. Because of this, every high-
school graduate deserves to have a solid foundation 
in statistical reasoning. Along with identifying proper 
uses of statistics in questionnaires and graphs, the 
Level B student should become aware of common 
misuses of statistics.

Proportional reasoning allows the Level B student to 
interpret data summarized in a variety of ways. One 
type of graph that often is misused for representing 
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data is the pictograph. For example, suppose the buy-
ing power of a dollar today is 50% of what it was 20 
years ago. How would one represent that in a picto-
graph? Let the buying power of a dollar 20 years ago 
be represented by the following dollar bill: 

If the buying power today is half what it was 20 years 
ago, one might think of reducing both the width and 
height of this dollar by one-half, as illustrated in the 
pictograph below:                            

Today’s dollar
at “half” size,

representing that 
it buys only half
of what it did 20

years ago.

Today’s dollar should look half the size of the dollar of 
20 years ago. Does it? Since both the length and the 
width were cut in half, the area of today’s dollar shown 
above is one-fourth the original area, not one-half. 

The two pictographs below show the correct reduc-
tion in area. The one on top changes only one di-

mension, while the other changes both dimensions, 
but in correct proportion so that the area is one-half 
the area of the original representation. This example 
provides the Level B student with an excellent exer-
cise in proportional reasoning. 

Today’s dollar
at half size,
with 50% taken 
from the length.

Today’s dollar
at half size, 
with sides
in correct 
proportion
to the original.

Poorly designed statistical graphs are commonly 
found in newspapers and other popular media. Sev-
eral examples of bad graphs, including the use of an 
unwarranted third dimension in bar graphs and circle 
graphs can be found at www.amstat.org/education/gaise/2, 
a web site managed by Carl Schwarz at Simon Fraser 
University. Students at Level B should be given oppor-
tunities to identify graphs that incorrectly represent 
data and then draw, with the aid of statistical computer 

“ Poorly
designed
statistical 
graphs are 
commonly 
found in
newspapers 
and other
popular media.”
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software, the correct versions. This gives them excel-
lent practice in calculating areas and volumes.

There are many famous misuses of data analysis in the 
literature, and three are mentioned here. The maga-
zine Literary Digest erred in 1936 when it projected that 
Alf Landon would defeat Franklin Delano Roosevelt 
by a 57 to 43 percent margin based on responses to 
its survey. Each survey included a subscription form 
to the magazine, and more than 2.3 million were re-
turned. Unfortunately, even large voluntary response 
surveys are generally not representative of the entire 
population, and Roosevelt won with 62% of the vote. 
George Gallup correctly projected the winner, and 
thereby began a very successful career in using ran-
dom sampling techniques for conducting surveys. 
Learning what Gallup did right and the Literary Digest 
did wrong gives the Level B student valuable insight 
into survey design and analysis. A more detailed dis-
cussion of this problem can be found in Hollander 
and Proschan (1984).

The 1970 Draft Lottery provides an example of in-
correctly applying randomness. In the procedure that 
was used, capsules containing birth dates were placed 
in a large box. Although there was an effort to mix 
the capsules, it was insuffi cient to overcome the fact 
that the capsules were placed in the box in order from 
January to December. This resulted in young men 
with birth dates in the latter months being more likely 
to have their dates selected sooner than birth dates 

elsewhere in the year. Hollander and Proschan (1984) 
give an excellent discussion of this problem.

The 25th fl ight of NASA’s space shuttle program took 
off on January 20, 1986. Just after liftoff, a puff of 
gray smoke could be seen coming from the right solid 
rocket booster. Seventy-three seconds into the fl ight, 
the Challenger exploded, killing all seven astronauts 
aboard. The cause of the explosion was determined to 
be an O-ring failure, due to cold weather. The disaster 
possibly could have been avoided had available data 
been displayed in a simple scatterplot and correctly 
interpreted. The Challenger disaster has become a case 
study in the possible catastrophic consequences of 
poor data analysis.

Summary of Level B

Understanding the statistical concepts of Level B en-
ables a student to begin to appreciate that data analysis 
is an investigative process consisting of formulating 
their own questions, collecting appropriate data 
through various sources (censuses, nonrandom and 
random sample surveys, and comparative experiments 
with random assignment), analyzing data through 
graphs and simple summary measures, and interpret-
ing results with an eye toward inference to a popula-
tion based on a sample. As they begin to formulate 
their own questions, students become aware that the 
world around them is fi lled with data that affect their 
own lives, and they begin to appreciate that statistics 
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can help them make decisions based on data. This will 
help them begin to appreciate that statistics can help 
them make decisions based on data, investigation, and 
sound reasoning.
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Level C
Level C is designed to build on the foundation 

developed in Levels A and B. In particular, 
Levels A and B introduced students to statistics 

as an investigatory process, the importance of using 
data to answer appropriately framed questions, types 
of variables (categorical versus numerical), graphical 
displays (including bar graph, dotplot, stemplot, his-
togram, boxplot, and scatterplot),  tabular displays 
(including two-way frequency tables for categorical 
data and both ungrouped and grouped frequency/
relative frequency tables for numerical data), and nu-
merical summaries (including counts, proportions, 
mean, median, range, quartiles, interquartile range, 
MAD, and QCR).

Additionally, Levels A and B covered common study 
designs (including census, simple random sample, and 
randomized designs for experiments), the process of 
drawing conclusions from data, and the role of prob-
ability in statistical investigations.

At Level C, all of these ideas are revisited, but the 
types of studies emphasized are of a deeper statistical 
nature. Statistical studies at this level require students 
to draw on basic concepts from earlier work, extend 
the concepts to cover a wider scope of investiga-
tory issues, and develop a deeper understanding of 
inferential reasoning and its connection to probability. 
Students also should have increased ability to explain 
statistical reasoning to others.

At Level C, students develop additional strategies for 
producing, interpreting, and analyzing data to help 
answer questions of interest. In general, students 
should be able to formulate questions that can be 
answered with data; devise a reasonable plan for col-
lecting appropriate data through observation, sampling, 
or experimentation; draw conclusions and use data to 
support these conclusions; and understand the role 
random variation plays in the inference process.

Specifi cally, Level C recommendations include:

I. Formulate Questions

→ Students should be able to formulate questions 
 and determine how data can be collected and 
 analyzed to provide an answer.

II. Collect Data

→ Students should understand what constitutes 
 good practice in conducting a sample survey. 
→ Students should understand what constitutes 
 good practice in conducting an experiment.
→ Students should understand what constitutes 
 good practice in conducting an observational 
 study.
→ Students should be able to design and
 implement a data collection plan for
 statistical studies, including observational
 studies, sample surveys, and simple
 comparative experiments.
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III. Analyze Data

→ Students should be able to identify
 appropriate ways to summarize numerical or
 categorical data using tables, graphical
 displays, and numerical summary statistics. 
→ Students should understand how sampling 
 distributions (developed through simulation) 
 are used to describe the sample-to-sample 
 variability of sample statistics. 
→ Students should be able to recognize
 association between two categorical variables.
→ Students should be able to recognize when 
 the relationship between two numerical
 variables is reasonably linear, know that 
 Pearson’s correlation coeffi cient is a measure of 
 the strength of the linear relationship between 
 two numerical variables, and understand the 
 least squares criterion in line fi tting.

IV. Interpret Results

→ Students should understand the meaning of 
 statistical signifi cance and the difference 
 between statistical signifi cance and practical 
 signifi cance.
→ Students should understand the role of p-values 
 in determining statistical signifi cance.
→ Students should be able to interpret the margin 
 of error associated with an estimate of a
 population characteristic.

An Introductory Example–Obesity
in America

Data and the stories that surround the data must be 
of interest to students! It is important to remember 
this when teaching data analysis. It is also important 
to choose data and stories that have enough depth to 
demonstrate the need for statistical thinking. The fol-
lowing example illustrates this. 

Students are interested in issues that affect their lives, 
and issues of health often fall into that category. News 
items are an excellent place to look for stories of cur-
rent interest, including items on health. One health-
related topic making lots of news lately is obesity. The 
following paragraph relates to a news story that is rich 
enough to provide a context for many of the statistical 
topics to be covered at Level C. 

A newspaper article that appeared in 2004 begins with 
the following lines: “Ask anyone: Americans are get-
ting fatter and fatter. Advertising campaigns say they 
are. So do federal offi cials and the scientists they rely 
on. … In 1991, 23% of Americans fell into the obese 
category; now 31% do, a more than 30% increase. But 
Dr. Jeffrey Friedman, an obesity researcher at Rock-
efeller University, argues that contrary to popular 
opinion, national data do not show Americans grow-
ing uniformly fatter. Instead, he says, the statistics 
demonstrate clearly that while the very fat are getting 
fatter, thinner people have remained pretty much the 
same. …The average weight of the population has in-
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creased by just seven to 10 pounds.” The discussion in 
the article refers to adults.

The following are suggested questions to explore with 
students who have a Level B background in statistics, 
but are moving on to Level C. 

→ Sketch a histogram showing what you think 
 a distribution of weights of American adults 
 might have looked like in 1991. Adjust the 
 sketch to show what the distribution of weights 
 might have looked like in 2002, the year of the 
 reported study. Before making your sketches, 
 think about the shape, center, and spread of 
 your distributions. Will the distribution be 
 skewed or symmetric? Will the median be 
 smaller than, larger than, or about the same 
 size as the mean? Will the spread increase as 
 you move from the 1991 distribution to the 
 2002 distribution?
→ Which sounds more newsworthy: “Obesity has 
 increased by more than 30%” or “On the aver-
 age, the weight of Americans has increased by 
 fewer than 10 pounds”? Explain your reasoning.
→ The title of the article is The Fat Epidemic: He 
 Says It’s an Illusion. [See New York Times, June 8, 
 2004, or CHANCE, Vol. 17., No. 4, Fall 2004, 
 p. 3 for the complete article.] Do you think this 
 is a fair title? Explain your reasoning. 
→ The data on which the percentages are based 
 come from the National Center for Health 

 Statistics, National Health and Nutrition
 Examination Survey 2002. This 
 is a survey of approximately 5,800 residents 
 of the United States. Although the survey 
 design is more complicated than a simple 
 random sample, the margin of error calculated 
 as if it were a simple random sample is a
 reasonable approximation. What is an
 approximate margin of error associated with 
 the 31% estimate of obesity for 2004?
 Interpret this margin of error for a newspaper 
 reader who never studied statistics. 

For the curious, information about how obesity is de-
fi ned can be found at www.amstat.org/education/gaise/3.

In answering these questions, students at Level C 
should realize that a distribution of weights is going 
to be skewed toward the larger values. This generally 
produces a situation in which the mean is larger than 
the median. Because 8% shifted over the obesity line 
between 1991 and 2002, but the average weight (or 
center) did not shift very much, the upper tail of the 
distribution must have gotten “fatter,” indicating a 
larger spread for the 2002 data. Students will have 
a variety of interesting answers for the second and 
third questions. The role of the teacher is to help 
students understand whether their answers are sup-
ported by the facts. The last question gets students 
thinking about an important estimation concept 
studied at Level C. 
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The Investigatory Process at Level C 

Because Level C revisits many of the same topics ad-
dressed at Levels A and B, but at a deeper and more 
sophisticated level, we begin by describing how the 
investigatory process looks at Level C. This general 
discussion is followed by several examples.

Formulating Questions

As stated at the beginning of Level A, data are more 
than just numbers. Students need to understand the 
types of questions that can be answered with data. 
For example, the question “Is the overall health of 
high-school students declining in this country?” is 
too big a question to answer with a statistical in-
vestigation (or even many statistical investigations). 
Certain aspects of the health of students, however, 
can be investigated by formulating more specifi c 
questions, such as “What is the rate of obesity 
among high-school students?”; “What is the average 
daily caloric intake for high-school seniors?”; “Is a 
three-day-a-week exercise regimen enough to main-
tain heart rate and weight within acceptable limits?” 
Question formulation, then, becomes the starting 
point for a statistical investigation.

Collecting Data—Types of Statistical Studies

Most questions that can be answered through data 
collection and interpretation require data from a 
designed study, either a sample survey or an experiment. 

These two types of statistical investigations have 
some common elements—each requires randomiza-
tion for both purposes of reducing bias and building 
a foundation for statistical inference and each makes 
use of the common inference mechanisms of margin 
of error in estimation and p-value in hypothesis test-
ing (both to be explained later). But these two types 
of investigations have very different objectives and 
requirements. Sample surveys are used to estimate or 
make decisions about characteristics (parameters) of 
populations. A well-defi ned, fi xed population is the 
main ingredient of such a study. Experiments are used 
to estimate or compare the effects of different experi-
mental conditions (treatments), and require well-de-
fi ned treatments and experimental units on which to 
study those treatments. 

Estimating the proportion of residents of a city that 
would support an increase in taxes for education re-
quires a sample survey. If the selection of residents 
is random, then the results from the sample can be 
extended to represent the population from which the 
sample was selected. A measure of sampling error 
(margin of error) can be calculated to ascertain how 
far the estimate is likely to be from the true value. 

Testing to see if a new medication to improve breath-
ing for asthma patients produces greater lung capacity 
than a standard medication requires an experiment in 
which a group of patients who have consented to par-
ticipate in the study are randomly assigned to either 
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the new or the standard medication. With this type of 
randomized comparative design, an investigator can 
determine, with a measured degree of uncertainty, 
whether the new medication caused an improvement 
in lung capacity. Randomized experiments are, in fact, 
the only type of statistical study capable of establish-
ing cause and effect relationships. Any generalization 
extends only to the types of units used in the experi-
ment, however, as the experimental units are not usu-
ally randomly sampled from a larger population. To 
generalize to a larger class of experimental units, more 
experiments would have to be conducted. That is one 
reason why replication is a hallmark of good science. 

Studies that have no random selection of sampling 
units or random assignment of treatments to ex-
perimental units are called observational studies in this 
document. A study of how many students in your 
high school have asthma and how this breaks down 
among gender and age groups would be of this type. 
Observational studies are not amenable to statistical 
inference in the usual sense of the term, but they 
can provide valuable insight into the distribution of 
measured values and the types of associations among 
variables that might be expected. 

At Level C, students should understand the key 
features of both sample surveys and experimental 
designs, including how to set up simple versions of 
both types of investigations, how to analyze the data 
appropriately (as the correct analysis is related to the 

design), and how to clearly and precisely state conclu-
sions for these designed studies. Key elements of the 
design and implementation of data collection plans for 
these types of studies follow. 

Sample Surveys

Students should understand that obtaining good re-
sults from a sample survey depends on four basic fea-
tures: the population, the sample, the randomization 
process that connects the two, and the accuracy of the 
measurements made on the sampled elements. For ex-
ample, to investigate a question on health of students, 
a survey might be planned for a high school. What is 
the population to be investigated? Is it all the students 
in the school (which changes on a daily basis)? Per-
haps the questions of interest involve only juniors and 
seniors. Once the population is defi ned as precisely as 
possible, one must determine an appropriate sample 
size and a method for randomly selecting a sample of 
that size. Is there, for example, a list of students who 
can then be numbered for random selection? Once 
the sampled students are found, what questions will 
be asked? Are the questions fair and unbiased (as far 
as possible)? Can or will the students actually answer 
them accurately? 

When a sample of the population is utilized, errors 
may occur for several reasons, including:
→ the sampling procedure is biased
→ the sample was selected from the wrong population
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→ some of the units selected to be in the sample 
 were unable (or unwilling) to participate
→ the questions were poorly written 
→ the responses were ambiguous 

These types of errors should be considered carefully 
before the study begins so plans can be made to reduce 
their chance of occurring as much as possible. One 
way to resolve the bias in the sampling procedure is to 
incorporate randomness into the selection process.

Two samples of size 50 from the same population 
of students will most likely not give the same result 
on, say, the proportion of students who eat a healthy 
breakfast. This variation from sample to sample is 
called sampling variability. When randomness is in-
corporated into the sampling procedure, probability 
provides a way to describe the “long-run” behavior of 
this sampling variability. 

Experiments

At Level C, students should understand that obtaining 
good results from an experiment depends upon four 
basic features: well-defi ned treatments, appropriate 
experimental units to which these treatments can be 
assigned, a sound randomization process for assign-
ing treatments to experimental units, and accurate 
measurements of the results of the experiment. Ex-
perimental units generally are not randomly selected 
from a population of possible units. Rather, they are 
the ones that happen to be available for the study. In 

experiments with human subjects, the people involved 
are often volunteers who have to sign an agreement 
stating they are willing to participate in the experi-
mental study. In experiments with agricultural crops, 
the experimental units are the fi eld plots that happen 
to be available. In an industrial experiment on process 
improvement, the units may be the production lines in 
operation during a given week. 

As in a sample survey, replicating an experiment will 
produce different results. Once again, random assign-
ment of experimental units to treatments (or vice versa) 
allows the use of probability to predict the behavior in 
the resulting values of summary statistics from a large 
number of replications of the experiment. Randomiza-
tion in experiments is important for another reason. 
Suppose a researcher decides to assign treatment A 
only to patients over the age of 60 and treatment B 
only to patients under the age of 50. If the treatment 
responses differ, it is impossible to tell whether the 
difference is due to the treatments or the ages of the 
patients. (This kind of bias in experiments and other 
statistical studies is called confounding.) The randomiza-
tion process, if properly done, will usually balance 
treatment groups so this type of bias is minimized. 

Observational Studies

At Level C, students should understand that observa-
tional studies are useful for suggesting patterns in data 
and relationships between variables, but do not provide a 
strong foundation for estimating population parameters 

“ When
randomness is
incorporated 
into the
sampling
procedure, 
probability
provides a way 
to describe
the ‘long-run’
behavior
of sampling
variability.”
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or establishing differences among treatments. Asking 
the students in one classroom whether they eat a 
healthy breakfast is not going to help you establish the 
proportion of healthy breakfast-eaters in the school, 
as the students in one particular classroom may not be 
representative of the students in the school. Random 
sampling is the only way to be confi dent of a represen-
tative sample for statistical purposes. Similarly, feed-
ing your cats Diet A and your neighbor’s cats Diet B is 
not going to allow you to claim that one diet is better 
than the other in terms of weight control, because 
there was no random assignment of experimental 
units (cats) to treatments (diets). As a consequence, 
confounding may result. Studies of the type suggested 
above are merely observational; they may suggest pat-
terns and relationships, but they are not a reliable basis 
for statistical inference. 

Analyzing Data 

When analyzing data from well-designed sample sur-
veys, students at Level C should understand that an 
appropriate analysis is one that can lead to justifi able 
inferential statements about population parameters 
based on estimates from sample data. The ability to 
draw conclusions about the population using informa-
tion from a sample depends on information provided 
by the sampling distribution of the sample statistic  
being used to summarize the sample data. At Level 
C, the two most common parameters of interest are 
the population proportion for categorical data and the 

population mean for numerical data. The appropriate 
sample statistics used to estimate these parameters are 
the sample proportion and the sample mean, respec-
tively. At Level C, the sample-to-sample variability, 
as described by the sampling distribution for each of 
these two statistics, is addressed in more depth.

Exploring how the information provided by a sam-
pling distribution is used for generalizing from a 
sample to the larger population enables students at 
Level C to draw more sophisticated conclusions from 
statistical studies. At Level C, it is recommended that 
the sampling distributions of a sample proportion and 
of a sample mean be developed through simulation. 
More formal treatment of sampling distributions can 
be left to AP Statistics and college-level introductory 
statistics courses.

Because the sampling distribution of a sample statis-
tic is a topic with which many teachers may not be 
familiar, several examples are included here to show 
how simulation can be used to obtain an approximate 
sampling distribution for a sample proportion and for 
a sample mean.

Properties of the sampling distribution for a sample 
proportion can be illustrated by simulating the process 
of selecting a random sample from a population using 
random digits as a device to model various populations. 

Example 1: The Sampling Distributi on
of a Sample Proportion
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For example, suppose a population is assumed to have 
60% “successes” (p = .6) and we are to take a random 
sample of n = 40 cases from this population. How far 
can we expect the sample proportion of successes to 
deviate from the true population value of .60? This 
can be answered by determining an empirical sam-
pling distribution for the sample proportion. 

One way to model a population with 60% successes 
(and 40% failures) is to utilize the 10 digits 0, 1,…, 9. 
Label six of the 10 digits as “success” and the other 
four as “failures.” To simulate selecting a sample of 
size 40 from this population, randomly select 40 ran-
dom digits (with replacement). Record the number of 
successes out of the 40 digits selected and convert this 
count to the proportion of successes in the sample. 
Note that:

Proportion of Successes in the Sample 
Number of Successes in the Sample

=
Sample Size

Repeating this process a large number of times, and 
determining the proportion of successes for each 
sample, illustrates the idea of the sample-to-sample 
variability in the sample proportion. 

Simulating the selection of 200 random samples of 
size 40 from a population with 60% successes and de-
termining the proportion of success for each sample 

resulted in the empirical distribution shown in Figure 
25. This empirical distribution is an approximation to 
the true sampling distribution of the sample propor-
tion for samples of size 40 from a population in which 
the actual proportion is .60.
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Figure 25: Histogram of sample proportions

Summarizing the above distribution based on its 
shape, center, and spread, one can state that this em-
pirical sampling distribution has a mound shape (ap-
proximately normal). Because the mean and standard 
deviation of the 200 sample proportions are .59 and .08, 
respectively, the empirical distribution shown in Figure 
25 has a mean of .59 and a standard deviation of .08.

By studying this empirical sampling distribution, and 
others that can be generated in the same way, students 
will see patterns emerge. For example, students will 
observe that, when the sample size is reasonably large 
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(and the population proportion of successes is not too 
near the extremes of 0 or 1), the shapes of the result-
ing empirical sampling distributions are approximately 
normal. Each of the empirical sampling distributions 
should be centered near the value of p, the population 
proportion of successes, and the standard deviation 
for each distribution should be close to:

p (1− p)
n

Note that in Example 1, the mean of the empirical dis-
tribution is .59, which is close to .6, and the standard 
deviation is .08, which is close to:

.6(.4)
40

≈ .0775

A follow-up analysis of these empirical sampling dis-
tributions can show students that about 95% of the 
sample proportions lie within a distance of: 

.6(.4)
40

≈0.1552

from the true value of p. This distance is called the 
margin of error.

Example 2: The Sampling Distribution of a Sample Mean

Properties of the sampling distribution for a sample 
mean can be illustrated in a way similar to that used 
for proportions in Example 1. Figure 26 shows the 
distribution of the sample mean when 200 samples of 

30 random digits are selected (with replacement) and 
the sample mean is computed. This simulates sam-
pling from a population that has a uniform distribu-
tion with equal numbers of 0s, 1s, 2s,…, 9s. Note that 
this population of numerical values has a mean, μ, of 
4.5 and a standard deviation, σ, of 2.9.
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Figure 26: Histogram of sample means

The empirical sampling distribution shown in Figure 
26 can be described as approximately normal with a 
mean of 4.46 (the mean of the 200 sample means from 
the simulation) and a standard deviation of 0.5 (the 
standard deviation of the 200 sample means). 

By studying this empirical sampling distribution, and 
others that can be generated in similar ways, students 
will see patterns emerge. For example, students will 
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observe that, when the sample size is reasonably large, 
the shapes of the empirical sampling distributions are 
approximately normal. Each of the empirical sam-
pling distributions should be centered near the value 
of μ, the population mean, and the standard deviation 
for each distribution should be close to:

n
σ

Note that in Example 2, the mean of the empirical 
sampling distribution is 4.46, which is close to μ = 4.5, 
and the standard deviation (0.5) is close to:

2.9 30 0.53n = =σ

The margin of error in estimating a population mean 
using the sample mean from a single random sample 
is approximately:

σ
2

n

The sample mean should be within this distance of 
the true population mean about 95% of the time in 
repeated random sampling.  

Interpreting Results

Generalizing from Samples

The key to statistical inference is the sampling distribu-
tion of the sample statistic, which provides information 

about the population parameter being estimated. As 
described in the previous section, knowledge of the 
sampling distribution for a statistic, like a sample pro-
portion or sample mean, leads to a margin of error 
that provides information about the maximum likely 
distance between a sample estimate and the popula-
tion parameter being estimated. Another way to state 
this key concept of inference is that an estimator plus 
or minus the margin of error produces an interval of 
plausible values for the population parameter. Any one 
of these plausible values could have produced the ob-
served sample result as a reasonably likely outcome. 

Generalizing from Experiments

Do the effects of the treatments differ? In analyzing 
experimental data, this is one of the fi rst questions 
asked. This question of difference is generally posed 
in terms of differences between the centers of the data 
distributions (although it could be posed as a differ-
ence between the 90th percentiles or any other mea-
sure of location in a distribution). Because the mean 
is the most commonly used statistic for measuring the 
center of a distribution, this question of differences 
is generally posed as a question about a difference in 
means. The analysis of experimental data, then, usu-
ally involves a comparison of means.

Unlike sample surveys, experiments do not depend 
on random samples from a fi xed population. Instead, 
they require random assignment of treatments to pre-
selected experimental units. The key question, then, 
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is: “Could the observed difference in treatment means 
be due to the random assignment (chance) alone, or 
can it be attributed to the treatments administered?”

The following examples are designed to illustrate and 
further illuminate the important concepts at Level C 
by carefully considering the four phases of a statistical 
analysis—question, design, analysis, interpretation—
in a variety of contexts. 

A survey of student music preferences was introduced 
at Level A, where the analysis consisted of making 
counts of student responses and displaying the data in 
a bar graph. At Level B, the analysis was expanded to 
consider relative frequencies of preferences and cross-
classifi ed responses for two types of music displayed 
in a two-way table. Suppose the survey included the 
following questions:

1. What kinds of music do you like?

Do you like country music?

Yes or No

Do you like rap music?

Yes or No

Do you like rock music?

Yes or No

Example 3: A Survey of Music Preferences

2. Which of the following types of music do you like most?
Select only one.

 Country Rap/Hip Hop Rock 

In order to be able to generalize to all students at the 
school, a representative sample of students from the 
school is needed. This could be accomplished by se-
lecting a simple random sample of 50 students from 
the school. The results can then be generalized to the 
school (but not beyond), and the Level C discussion 
will center on basic principles of generalization—or 
statistical inference. 

A Level C analysis begins with a two-way table of 
counts that summarizes the data on two of the ques-
tions: “Do you like rock music?” and “Do you like 
rap music?” The table provides a way to separately ex-
amine the responses to each question and to explore 
possible connections (association) between the two 
categorical variables. Suppose the survey of 50 stu-
dents resulted in the data summarized in Table 11. 

As demonstrated at Level B, there are a variety of ways 
to interpret data summarized in a two-way table, such 
as Table 11. Some examples based on all 50 students in 
the survey include:
→ 25 of the 50 students (50%) liked both rap and

rock music.
→ 29 of the 50 students (58%) liked rap music.
→ 19 of the 50 students (38%) did not like rock music.
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Table 11: Two-Way Frequency Table

                         Like Rock Music?

Row Yes                No

Like Rap 
Music?

Column Totals

Yes

No

25   4

  6 15

31 19

Totals

21

50

One type of statistical inference relates to conjectures 
(hypotheses) made before the data were collected. 
Suppose a student says “I think more than 50% of 
the students in the school like rap music.” Because 
58% of the students in the sample liked rap music 
(which is more than 50%), there is evidence to sup-
port the student’s claim. However, because we have 
only a sample of 50 students, it is possible that 50% of 
all students like rap (in which case, the student’s claim 
is not correct), but the variation due to random sam-
pling might produce 58% (or even more) who like rap. 
The statistical question, then, is whether the sample 
result of 58% is reasonable from the variation we ex-
pect to occur when selecting a random sample from a 
population with 50% successes.

One way to arrive at an answer is to set up a hypo-
thetical population that has 50% successes (such as 
even and odd digits produced by a random number 
generator) and repeatedly take samples of size 50 from 
it, each time recording the proportion of even digits. 

The sampling distribution of proportions so gener-
ated will be similar to the one below. 

0.30 0.40 0.50 0.60 0.70
Proportion

Movable line is at 0.58

Sample proportions

29

Figure 27: Dotplot of sample proportions from a hypo-
thetical population in which 50% like rap music

Based on this simulation, a sample proportion greater 
than or equal to the observed .58 occurred 12 times 
out of 100 just by chance variation alone when the 
actual population proportion is .50. This suggests the 
result of .58 is not a very unusual occurrence when 
sampling from a population with .50 as the “true” 
proportion of students who like rap music. So a popu-
lation value of .50 is plausible based on what was ob-
served in the sample, and the evidence in support of 
the student’s claim is not very strong. The fraction of 
times the observed result is matched or exceeded (.12 
in this invest igat ion) is cal led the approximate 
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p-value. The p-value represents the chance of observ-
ing the result observed in the sample, or a result more 
extreme, when the hypothesized value is in fact cor-
rect. A small p-value would have supported the stu-
dent’s claim, because this would have indicated that if 
the population proportion was .50, it would have been 
very unlikely that a sample proportion of .58 would 
have been observed. 

Suppose another student hypothesized that more 
than 40% of the students in the school like rap music. 
To test this student’s claim, samples of size 50 must 
now be repeatedly selected from a population that has 
40% successes. Figure 28 shows the results of one such 
simulation. The observed result of .58 was reached 
only one time out of 100, and no samples produced 
a proportion greater than .58. Thus, the approximate 

Figure 28: Dotplot of sample proportions from a hypo-
thetical population in which 40% like rap music

p-value is .01, and it is not likely that a population in 
which 40% of the students like rap music would have 
produced a sample proportion of 58% in a random 
sample of size 50. This p-value provides very strong 
evidence in support of the student’s claim that more 
than 40% of the students in the entire school like rap 
music.

Another way of stating the above is that .5 is a plausible 
value for the true population proportion, based on the 
sample evidence, but .4 is not. A set of plausible values 
can be found by using the margin of error introduced 
in Example 1. As explained previously, the margin of 
error for a sample proportion is approximately: 

2 p (1− p)
n

However, in this problem, the true value of p is un-
known. Our sample proportion ( p̂ = .58 )  is our “best 
estimate” for what p might be, so the margin of error 
can be estimated to be:

14.
50

)42(.58.
2

)ˆ1(ˆ
2 ≈=−

n
pp

Thus, any proportion between .58 − .14 = .44 and 
.58 + .14 = .72 can be considered a plausible value 
for the true proportion of students at the school who 
like rap music. Notice that .5 is well within this in-
terval, but .4 is not. 
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Another type of question that could be asked about 
the students’ music preferences is of the form “Do 
those who like rock music also tend to like rap mu-
sic?” In other words, is there an association between 
liking rock music and liking rap music? The same data 
from the random sample of 50 students can be used to 
answer this question.

According to Table 11, a total of 31 students in the 
survey like rock music. Among those students, the 
proportion who also like rap music is 25/31 = .81. 
Among the 19 students who do not like rock music, 
4/19 = .21 is the proportion who like rap music. The 
large difference between these two proportions (.60) 
suggests there may be a strong association between 
liking rock music and liking rap music. But could this 
association simply be due to chance (a consequence 
only of the random sampling)? 

If there were no association between the two groups, 
then the 31 students who like rock would behave as a 
random selection from the 50 in the sample. We would 
expect the proportion who like rap among these 31 
students to be close to the proportion who like rap 
among the 19 students who don’t like rock. Essential-
ly, this means that if there is no association, we expect 
the difference between these two proportions to be 
approximately 0. Because the difference in our survey 
is .6, this suggests that there is an association. Can the 
difference, .6, be explained by the random variation 
we expect when selecting a random sample?

To simulate this situation, we create a population of 
29 1s (those who like rap) and 21 0s (those who do 
not like rap) and mix them together. Then, we select 
31 (representing those who like rock) at random and 
see how many 1s (those who like rap) we get. It is this 
entry that goes into the (yes, yes) cell of the table, and 
from that data the difference in proportions can be 
calculated. Repeating the process 100 times produces 
a simulated sampling distribution for the difference 
between the two proportions, as shown in Figure 29. 

-0.4 -0.2 0.0 0.2 0.4 0.6
Difference

Movable line is at 0.60

Differences between proportions

Figure 29: Dotplot showing simulated sampling
distribution
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The observed difference in proportions from the 
sample data, .6, was never reached in 100 trials, in-
dicating that the observed difference cannot be at-
tributed to chance alone. Thus, there is convincing 
evidence of a real association between liking rock 
music and liking rap music. 

What is the effect of different durations of light and 
dark on the growth of radish seedlings? This ques-
tion was posed to a class of biology students who 
then set about designing and carrying out an experi-
ment to investigate the question. All possible relative 
durations of light to dark cannot possibly be investi-
gated in one experiment, so the students decided to 
focus the question on three treatments: 24 hours of 
light, 12 hours of light and 12 hours of darkness, and 
24 hours of darkness. This covers the extreme cases 
and one in the middle. 

With the help of a teacher, the class decided to use 
plastic bags as growth chambers. The plastic bags 
would permit the students to observe and measure 
the germination of the seeds without disturbing them. 
Two layers of moist paper towel were put into a dis-
posable plastic bag, with a line stapled about 1/3 of 
the way from the bottom of the bag (see Figure 30) to 
hold the paper towel in place and to provide a seam to 
hold the radish seeds. 

Example 4: An Experiment on the Effects of Light on the Growth 
of Radish Seedlings

Figure 30: Seed experiment

Although three growth chambers would be suffi cient 
to examine the three treatments, this class made four 
growth chambers, with one designated for the 24 
hours of light treatment, one for the 12 hours of light 
and 12 hours of darkness treatment, and two for the 
24 hours of darkness treatment. One hundred twenty 
seeds were available for the study. Thirty of the seeds 
were chosen at random and placed along the stapled 
seam of the 24 hours of light bag. Thirty seeds were 
then chosen at random from the remaining 90 seeds 
and placed in the 12 hours of light and 12 hours of 
darkness bag. Finally, 30 of the remaining 60 seeds 
were chosen at random and placed in one of the 24 
hours of darkness bags. The fi nal 30 seeds were placed 
in the other 24 hours of darkness bag. After three 
days, the lengths of radish seedlings for the germinat-
ing seeds were measured and recorded. These data are 
provided in Table 12; the measurements are in milli-

Seeds
Staples
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Table 12: Lengths of Radish Seedlings

Treatment 1 Treatment 2 Treatment 3 Treatment 1 Treatment 2 Treatment 3
24 light 12 light, 12 24 dark 24 light 12 light, 12 24 dark

dark dark

2   3   5 20 10 17 15

3   4   5 20 10 20 15

5   5   8 22 10 20 15

5   9   8 24 10 20 15

5 10   8 25 10 20 15

5 10   8 25 10 20 15

5 10 10 25 10 21 16

7 10 10 25 10 21 20

7 10 10 25 14 22 20

7 11 10 26 15 22 20

8 13 10 29 15 23 20

8 15 11 30 20 25 20

8 15 14 30 21 25 20

9 15 14 30 21 27 20

20 40

30

30

30

31

33

35

35

35

35

35

35

36

37

38

meters. Notice that not all of the seeds in each group mm and two at 21 mm) in the Treatment 1 (24 hours 
germinated. of light) data. Otherwise, the distributions are fairly 

symmetric, which is good for statistical inference. A good fi rst step in the analyses of numerical data 
such as these is to make graphs to look for patterns In Figure 31, Treatment 1 is 24 hours of light; treat-
and any unusual departures from the patterns. Box- ment 2 is 12 hours of light and 12 of darkness; treat-
plots are ideal for comparing data from more than ment 3 is 24 hours of darkness.
one treatment, as you can see in Figure 31. Both the The summary statistics for these data are shown in 
centers and the spreads increase as the amount of Table 13. 
darkness increases. There are three outliers (one at 20 
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Treat- n Mean Median Std. Dev.
ment

1 28   9.64    9.5 5.03

2 28 15.82 16.0 6.76

3 58 21.86 20.0 9.75

Length
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Figure 31: Boxplot showing growth under different 
conditions

Experiments are designed to compare treatment 
effects, usually by comparing means. The original 
question on the effect of different periods of light 
and dark on the growth of radish seedlings might be 
turned into two questions about treatment means. Is 
there evidence that the 12 hours of light and 12 hours 
of dark (Treatment 2) group has a signifi cantly higher 
mean than the 24 hours of light (Treatment 1) group? 
Is there evidence that the 24 hours of dark (Treatment 
3) group has a signifi cantly higher mean than the 12 
hours of light and 12 hours of dark (Treatment 2) 
group? Based on the boxplots and the summary sta-
tistics, it is clear that the sample means differ. Are these 

Table 13: Treatment Summary Statistics

differences large enough to rule out chance variation as a possible 
explanation for the observed difference? 

The Treatment 2 mean is 6.2 mm larger than the 
Treatment 1 mean. If there is no real difference be-
tween the two treatments in terms of their effect on 
seedling growth, then the observed difference must 
be due to the random assignment of seeds to the 
bags; that is, one bag was simply lucky enough to get 
a preponderance of good and lively seeds. But, if a dif-
ference this large (6.2 mm) is likely to be the result of 
randomization alone, then we should see differences 
of this magnitude quite often if we repeatedly re-
randomize the measurements and calculate a new dif-
ference in observed means. This, however, is not the 
case, as one can see from Figure 32. This dotplot was 
produced by mixing the growth measurements from 
Treatments 1 and 2 together, randomly splitting them 
into two groups of 28 measurements, recording the 
difference in means for the two groups, and repeating 
the process 200 times. 

The observed difference of 6.2 mm was exceeded only 
one time in 200 trials, for an approximate p-value of 

“ Experiments 
are designed
to compare 
treatment
effects, usually 
by comparing 
means.”
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Figure 32: Dotplot showing differences of means

1/200. This is very small, and gives extremely strong 
evidence to support the hypothesis that there is a sta-
tistically signifi cant difference between the means for 
Treatments 1 and 2. The observed difference of 6.2 mm 
is very unlikely to be due simply to chance variation. 

In a comparison of the means for Treatments 2 and 3, 
the same procedure is used, except that the combined 
measurements are split into groups of 28 and 58 each 
time. The observed difference of 6 mm was exceeded 
only one time out of 200 trials (see Figure 33), giving 
extremely strong evidence of a statistically signifi cant 
difference between the means for Treatments 2 and 
3. In summary, the three treatment groups show
statistically signifi cant differences in mean growth
that cannot reasonably be explained by the random as-

-6 -4 -2 0 2 4 6 8
Difference

Movable line is at 6.2

Differences of means

Figure 33: Dotplot showing differences of means

signment of seeds to the bags. This gives us convinc-
ing evidence of a treatment effect—the more hours 
of darkness, the greater the growth of the seedling, at 
least for these three periods of light versus darkness. 

Students should be encouraged to delve more deeply 
into the interpretation, relating it to what is known 
about the phenomenon or issue under study. Why do 
the seedlings grow faster in the dark? Here is an ex-
planation from a biology teacher. It seems to be an 
adaptation of plants to get the seedlings from the dark 
(under ground) where they germinate into the light 
(above ground) as quickly as possible. Obviously, the 
seedling cannot photosynthesize in the dark and is 
using up the energy stored in the seed to power the 

-6 -4 -2 0 2 4 6 8
Difference

Movable line is at 6.0

Differences of means
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growth. Once the seedling is exposed to light, it shifts 
its energy away from growing in length to producing 
chlorophyll and increasing the size of its leaves. These 
changes allow the plant to become self-suffi cient 
and begin producing its own food. Even though the 
growth in length of the stem slows, the growth in di-
ameter of the stem increases and the size of the leaves 
increases. Seedlings that continue to grow in the dark 
are spindly and yellow, with small yellow leaves. Seed-
lings grown in the light are a rich, green color with 
large, thick leaves and short stems.

Example 5: Estimating the Density of the Earth—
A Classical Study

What is the density of the Earth? This is a question 
that intrigued the great scientist Henry Cavendish, 
who attempted to answer the question in 1798. Cav-
endish estimated the density of the Earth by using the 
crude tools available to him at the time. He did not 
literally take a random sample; he measured on dif-
ferent days and at different times, as he was able. But 
the density of the Earth does not change over time, 
so his measurements can be thought of as a random 
sample of all the measurements he could have taken 
on this constant. The variation in the measurements 
is due to his measurement error, not to changes in the 
Earth’s density. The Earth’s density is the constant 
that is being estimated. 

This is a typical example of an estimation problem 
that occurs in science. There is no real “popula-
tion” of measurements that can be sampled; rather, 
the sample data is assumed to be a random selection 
from the conceptual population of all measurements 
that could have been made. At this point, there may 
be some confusion between an “experiment” and a 
“sample survey” because Cavendish actually conduct-
ed a scientifi c investigation to get his measurements. 
The key, however, is that he conducted essentially the 
same investigation many times with a goal of estimat-
ing a constant, much like interviewing many people 
to estimate the proportion who favor a certain candi-
date for offi ce. He did not randomly assign treatments 
to experimental units for the purpose of comparing 
treatment effects. 

The famous Cavendish data set contains his 29 mea-
surements of the density of the Earth, in grams per 
cubic centimeter. The data are shown below [Source:  
http://lib.stat.cmu.edu/DASL]: 
5.50 5.57 5.42 5.61 5.53 5.47 4.88 
5.62 5.63 4.07 5.29 5.34 5.26 5.44 
5.46 5.55 5.34 5.30 5.36 5.79 5.75 
5.29 5.10 5.86 5.58 5.27 5.85 5.65 

5.39

One should look at the data before proceeding with an 
analysis. The histogram in Figure 34 shows the data to 
be roughly symmetric, with one unusually small value. 
If Cavendish were alive, you could ask him if he had 
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Figure 34: Histogram of Earth density measurements

made a mistake (and that is certainly what you should 
do for a current data set). 
The mean of the 29 measurements is 5.42 and the 
standard deviation is 0.339. Recall that the margin of 
error for the sample mean is:

2
n
σ

where σ is the population standard deviation. In 
this problem, the population standard deviation is 
not known; however, the sample standard deviation 
provides an estimate for the population standard 
deviation. Consequently, the margin of error can be 
estimated to be:

2
s
n

= 2
0.339

29
= 0.126

The analysis shows that any value between 5.420 
– 0.126 and 5.420 + 0.126, or in the interval (5.294, 
5.546), is a plausible value of the density of the Earth. 
That is, any value in the interval is consistent with the 
data obtained by Cavendish. Now, the questionable 
low observation should be taken into account, as it 
will lower the mean and increase the standard devia-
tion. If that measurement is regarded as a mistake and 
removed from the data set, the mean of the 28 re-
maining observations is 5.468 and the standard devia-
tion is 0.222, producing a margin of error of 0.084 and 
an interval of plausible values of (5.384, 5.552). 

Students now can check on how well Cavendish did; 
modern methods pretty much agree that the average 
density of the Earth is about 5.515 grams per cubic 
centimeter. The great 18th century scientist did well!

Example 6: Linear Regression Analysis—Height vs.
Forearm Length 

Regression analysis refers to the study of relationships 
between variables. If the “cloud” of points in a scat-
terplot of paired numerical data has a linear shape, 
a straight line may be a realistic model of the rela-
tionship between the variables under study. The least 
squares line runs through the center (in some sense) 
of the cloud of points. Residuals are defi ned to be 
the deviations in the y direction between the points 
in the scatterplot and the least squares line; spread 
is now the variation around the least squares line, as 

Regression 
analysis refers 
to the study
of relationships 
between
variables.”

“
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Table 14: Heights vs. Forearm Lengths

Forearm Height (cm) Forearm Height (cm)
(cm) (cm)

45.0 180.0 41.0 163.0

44.5 173.2 39.5 155.0

39.5 155.0 43.5 166.0

43.9 168.0 41.0 158.0

47.0 170.0 42.0 165.0

49.1 185.2 45.5 167.0

48.0 181.1 46.0 162.0

47.9 181.9 42.0 161.0

40.6 156.8 46.0 181.0

45.5 171.0 45.6 156.0

46.5 175.5 43.9 172.0

43.0 158.5 44.1 167.0

measured by the standard deviation of the residuals. 
When using a fi tted model to predict a value of y from 
x, the associated margin of error depends on the stan-
dard deviation of the residuals.

Relationships among various physical features, such 
as height versus arm span and neck size versus shoe 
size, can be the basis of many interesting questions 
for student investigation. If I were painting a picture 
of a person, how could I get the relative sizes of the 
body parts correct? This question prompted students 
to carry out an investigation of one of the possible re-
lationships, that between forearm length and height. 

Figure 35: Scatterplot and residual plot

Height = 2.76Forearm + 45.8 r2 = 0.64
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The students responsible for the study sampled other 
students on which to make forearm and height mea-
surements. Although the details of how the sample 
actually was selected are not clear, we will suppose 
that it is representative of students at the school and 
has the characteristics of a random sample. An impor-
tant consideration here is to agree on the defi nition 
of “forearm” before beginning to take measurements. 
The data obtained by the students (in centimeters) are 
provided in Table 14. 

A good fi rst step in any analysis is to plot the data, 
as we have done in Figure 35. The linear trend in the 
plot is fairly strong. The scatterplot, together with 
Pearson’s correlation coeffi cient of .8, indicate that a 
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line would be a reasonable model for summarizing the 
relationship between height and forearm length.

The scatterplot includes a graph of the least squares line:

Predicted Height = 45.8 + 2.76(Forearm Length).

The plot below the scatterplot shows the residuals. 
There are a few large residuals but no unusual pat-
tern in the residual plot. The slope (about 2.8) can be 
interpreted as an estimate of the average difference 
in heights for two persons whose forearms are 1 cm 
different in length. The intercept of 45.8 centime-
ters cannot be interpreted as the expected height 
of a person with a forearm zero centimeters long! 
However, the regression line can reasonably be used 
to predict the height of a person for whom the fore-
arm length is known, as long as the known forearm 
length is in the range of the data used to develop 
the prediction equation (39 to 50 cm for these data). 
The margin of error for this type of prediction is 
approximately 2(standard deviation of the residuals). 
For these data, the standard deviation of the residu-
als is 5.8 (not shown here, but provided as part of the 
computer output), so the margin of error is 2(5.8) 
= 11.6 cm. The predicted height of someone with a 
forearm length of 42 cm would be:

Predicted Height = 45.8 + 2.76(42) = 161.7 cm

With 95% confi dence, we would predict the height of 
people with forearm length 42 cm to be between 150.1 
cm and 173.3 cm (161.7 ± 11.6).

Is the slope of 2.8 “real,” or simply a result of chance 
variation from the random selection process? This 
question can be investigated using simulation. A 
description of this simulation is included in the Ap-
pendix to Level C.

Example 7: Comparing Mathematics Scores—
An Observational Study

Data often are presented to us in a form that does not 
call for much analysis, but does require some insight 
into statistical principles for correct interpretation. 
Standardized test scores often fall into this category. 
Table 15 gives information about the state mean scores 
on the National Assessment of Educational Progress 
(NAEP) 2000 Grade 4 mathematics scores for Louisi-
ana and Kentucky. Even though these scores are based 
on a sample of students, these are the scores assigned 
to the states, and consequently, they can be considered 
observational data from that point of view. 

Table 15: NAEP 2000 Scores in Mathematics

Overall Mean for Mean for % White
Mean Whites Non-

whites

Louisiana 217.96 229.51 204.94

Kentucky 220.99 224.17 87

To see if students understand the table, it is informa-
tive to ask them to fi ll in a few omitted entries. 
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→ Fill in the two missing entries in the table
(53% and 199.71).

More substantive questions involve the seeming con-
tradictions that may occur in data of this type. They 
might be phrased as follows.
→ For the two states, compare the overall means.

Compare the means for whites. Compare the
means for nonwhites. What do you observe?

→ Explain why the reversals in direction take place
once the means are separated into racial groups.

It is genuinely surprising to students that data summa-
ries (means in this case) can go in one direction in the 
aggregate but can go in the opposite direction for each 
subcategory when disaggregated. This phenomenon is 
called Simpson’s Paradox. 

Example 8: Observational Study—Toward Establis hing 
Causation

Observational studies are the only option for situ-
ations in which it is impossible or unethical to ran-
domly assign treatments to subjects. Such situations 
are a common occurrence in the study of causes of 
diseases. A classical example from this fi eld is the re-
lationship between smoking and lung cancer, which 
prompted heated debates during the 1950s and 1960s. 
Society will not condone the notion of assigning some 
people to be smokers and others to be nonsmokers in 
an experiment to see if smoking causes lung cancer. 
So the evidence has to be gathered from observing the 

Table 16: Cigarette Smoking and Lung Cancer

Lung Cancer Controls Totals
Cases

Smokers 647 622 1,269

Non-     2   27      29
smokers

world as it is. The data collection process still can be 
designed in clever ways to obtain as much information 
as possible. 

Here is an example from the smoking versus lung 
cancer debates. A group of 649 men with lung cancer 
was identifi ed from a certain population in England. 
A control group of the same size was established by 
matching these patients with other men from the 
same population who did not have lung cancer. The 
matching was on background variables such as eth-
nicity, age, and socioeconomic status. (This is called a 
case-control study.) The objective, then, is to compare 
the rate of smoking among those with lung cancer to 
the rate for those without cancer.

First, make sure students understand the nature of 
the data in Table 16. Does this show, for example, 
that there was a very high percentage of smokers in 
England around 1950? The rate of smoking in these 
groups was (647/649) = .997 for the cancer patients 
and (622/649) = .958 for the controls. If these data 
had resulted from a random assignment or selection, 
the difference of about 4 percentage points would be 
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statistically signifi cant (by methods discussed earlier), 
which gives the researcher reason to suspect there 
is an association here that cannot be attributed to 
chance alone. Another way to look at these data is 
to think about randomly selecting one person from 
among the smokers and one person from among the 
nonmokers. The smoker has a chance of 647/1269 
= .51 of being in the lung cancer column, while the 
nonsmoker has only a 2/29 = .07 chance of being 
there. This is evidence of strong association between 
smoking and lung cancer, but it is not conclusive 
evidence that smoking is, in fact, the cause of the 
lung cancer. (This is a good place to have students 
speculate about other possible causes that could have 
resulted in data like these.) 

Another step in establishing association in observa-
tional studies is to see if the increase in exposure to 
the risk factor produces an increase in incidence of 
the disease. This was done with the same case-control 
study by looking at the level of smoking for each per-
son, producing Table 17. 

Table 17: Level of Cigarette Smoking and Lung Cancer

Cigarettes/ Lung Cancer Controls Probability
Day Cases

0     2    27 0.07

1–14 283 346 0.45

15–24 196 190 0.51

25+ 168    84 0.67

The term “probability” is used in the same sense as 
above. If a person is randomly selected from the 1–14 
level, the chance that the person falls into the can-
cer column is .45, and so on for the other rows. The 
important result is that these “probabilities” increase 
with the level of smoking. This is evidence that an in-
crease in the disease rate is associated with an increase 
in cigarette smoking.

Even with this additional evidence, students should 
understand that a cause and effect relationship cannot 
be established from an observational study. The main 
reason for this is that these observational studies are 
subject to bias in the selection of patients and controls. 
Another study of this type could have produced a dif-
ferent result. (As it turned out, many studies of this 
type produced remarkably similar results. That, cou-
pled with laboratory experiments on animals that es-
tablished a biological link between smoking and lung 
cancer, eventually settled the issue for most people.)

The Appendix to Level C contains more examples of 
the types discussed in this section.

The Role of Probability in Statistics

Teachers and students must understand that sta-
tistics and probability are not the same. Statistics 
uses probability, much as physics uses calculus, but 
only certain aspects of probability make their way 
into statistics. The concepts of probability needed 
for introductory statistics (with emphasis on data 
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analysis) include relative frequency interpretations of 
data, probability distributions as models of popula-
tions of measurements, an introduction to the normal 
distribution as a model for sampling distributions, and 
the basic ideas of expected value and random varia-
tion. Counting rules, most specialized distributions 
and the development of theorems on the mathematics 
of probability should be left to areas of discrete math-
ematics and/or calculus. 

Understanding the reasoning of statistical inference 
requires a basic understanding of some important 
ideas in probability. Students should be able to:
→ Understand probability as a long-run relative 
 frequency;
→ Understand the concept of independence; and
→ Understand how probability can be used in 
 making decisions and drawing conclusions.

In addition, because so many of the standard inferential 
procedures are based on the normal distribution, students 
should be able to evaluate probabilities using the normal 
distribution (preferably with the aid of technology).

Probability is an attempt to quantify uncertainty. The 
fact that the long-run behavior of a random process is 
predictable leads to the long-run relative frequency in-
terpretation of probability. Students should be able to 
interpret the probability of an outcome as the long-run 
proportion of the time the outcome should occur if 
the random experiment is repeated a large number of 

times. This long-run relative frequency interpretation 
of probability also provides the justifi cation for using 
simulation to estimate probabilities. After observing a 
large number of chance outcomes, the observed pro-
portion of occurrence for the outcome of interest can 
be used as an estimate of the relevant probability.

Students also need to understand the concept of in-
dependence. Two outcomes are independent if our 
assessment of the chance that one outcome occurs 
is not affected by knowledge that the other outcome 
has occurred. Particularly important to statistical 
inference is the notion of independence in sampling 
settings. Random selection (with replacement) from 
a population ensures the observations in a sample are 
independent. For example, knowing the value of the 
third observation does not provide any information 
about the value of the fi fth (or any other) observation. 
Many of the methods used to draw conclusions about 
a population based on data from a sample require the 
observations in a sample to be independent.

Most importantly, the concepts of probability play 
a critical role in developing statistical methods that 
make it possible to make inferences based on sample 
data and to assess our confi dence in such conclusions.

To clarify the connection between data analysis and 
probability, we will return to the key ideas presented 
in the inference section. Suppose an opinion poll 
shows 60% of sampled voters in favor of a proposed 
new law. A basic statistical question is, “How far 

“ Probability
is an attempt
to quantify
uncertainty.”
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might this sample proportion be from the true 
population proportion?” That the difference between 
the estimate and the truth is less than the margin of 
error approximately 95% of the time is based on a 
probabilistic understanding of the sampling distribu-
tion of sample proportions. For large random samples, 
this relative frequency distribution of sample propor-
tions is approximately normal. Thus, students should 
be familiar with how to use appropriate technology to 
fi nd areas under the normal curve.

Suppose an experimenter divides subjects into two 
groups, with one group receiving a new treatment 
for a disease and the other receiving a placebo. If the 
treatment group does better than the placebo group, 
a basic statistical question is, “Could the difference 
have been a result of chance variation alone?” The 
randomization allows us to determine the probabil-
ity of a difference being greater than that observed 
under the assumption of no treatment effect. In turn, 
this probability allows us to draw a meaningful con-
clusion from the data. (A proposed model is rejected 
as implausible, not primarily because the probability 
of an observed outcome is small, but rather because 
it is in the tail of a distribution.) An adequate answer 
to the above question also requires knowledge of the 
context in which the question was asked and a sound 
experimental design. This reliance on context and 
design is one of the basic differences between statis-
tics and mathematics.

As demonstrated earlier, the sampling distribution of a 
sample mean will be approximately normal under ran-
dom sampling, as long as the sample size is reasonably 
large. The mean and standard deviation of this distri-
bution usually are unknown (introducing the need for 
inference), but sometimes these parameter values can 
be determined from basic information about the pop-
ulation being sampled. To compute these parameter 
values, students will need some knowledge of expected 
values, as demonstrated next. 

According to the March 2000 Current Population 
Survey of the U.S. Census Bureau, the distribution of 
family size is as given by Table 18. (A family is defi ned 
as two or more related people living together. The 
number “7” really is the category “7 or more,” but 
very few families are larger than 7.) 

Table 18: Family Size Distribution

Family Size, x Proportion, p(x)

2 0.437

3 0.223

4 0.201

5 0.091

6 0.031

7 0.017

Notice fi rst the connection between data and prob-
ability: These proportions (really estimates from a 
very large sample survey) can be taken as approximate 
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probabilities for the next survey. In other words, if 
someone randomly selects a U.S. family for a new 
survey, the probability that it will have three mem-
bers is about .223. 

Second, note that we now can fi nd the mean and stan-
dard deviation of a random variable (call it X), defi ned 
as the number of people in a randomly selected family. 
The mean, sometimes called the expected value of X and 
denoted by E(X), is found using the formula: 

( ) ( )
all possible

xvalues

E X x p x= ⋅∑

which turns out to be 3.11 for this distribution. If the 
next survey contains 100 randomly selected families, 
then the survey is expected to produce 3.11 members 
per family, on the average, for an estimated total of 
311 people in the 100 families altogether. 

The standard deviation of X, SD(X), is the square 
root of the variance of X, V(X), given by:

V X( ) = ∑ [x − ⋅E(X )]2 p(x)
all possible

xvalues

For the family size data, V(X) = 1.54 and SD(X) = 1.24. 

Third, these facts can be assembled to describe the ex-
pected sampling distribution of the mean family size 
in a random sample of 100 families yet to be taken. 
That sampling distribution will be approximately 

normal in shape, centering at 3.11 with a standard de-
viation of 1.24/ 100  = 0.124. This would be useful 
information for the person designing the next survey. 

In short, the relative frequency defi nition of prob-
ability, the normal distribution, and the concept of ex-
pected value are the keys to understanding sampling 
distributions and statistical inference. 

Summary of Level C

Students at Level C should become adept at using 
statistical tools as a natural part of the investigative 
process. Once an appropriate plan for collecting data 
has been implemented and the resulting data are in 
hand, the next step usually is to summarize the data 
using graphical displays and numerical summaries. At 
Level C, students should be able to select summary 
techniques appropriate for the type of data available, 
produce these summaries, and describe in context the 
important characteristics of the data. Students will 
use the graphical and numerical summaries learned at 
Levels A and B, but should be able to provide a more 
sophisticated interpretation that integrates the context 
and objectives of the study.

At Level C, students also should be able to draw con-
clusions from data and support these conclusions us-
ing statistical evidence. Students should see statistics as 
providing powerful tools that enable them to answer 
questions and to make informed decisions. Students 
also should understand the limitations of conclusions 



88

based on data from sample surveys and experiments, 
and should be able to quantify uncertainty associated 
with these conclusions using margin of error and re-
lated properties of sampling distributions.
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Appendix for Level A
What Are Common Name Lengths?

Formulate Questions

During the fi rst week of school, a third-grade teacher 
is trying to help her students learn one another’s 
names by playing various games. During one of the 
games, a student named MacKenzie noticed she and 
her classmate Zacharius each have nine letters in their 
names. MacKenzie conjectured that their names were 
longer than everyone else’s names. The teacher de-
cided that this observation by the student provided an 
excellent opening for a statistics lesson. 

The next school day, the teacher reminds students 
of MacKenzie’s comment from the day before and 
asks the class what they would like to know about 
their classmates’ names. The class generates a list of 
questions, which the teacher records on the board 
as follows:
→ Who has the longest name? The shortest?
→ Are there more nine-letter names or six-letter 

names? How many more?
→ What’s the most common name length?
→ How many letters are in all of our names?
→ If you put all of the eight- and nine-letter 

names together, will there be as many as the 
 fi ve-letter names?
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Figure 36: Random placement of names

Collect Data 

The statistics lesson begins with students writing their 
names on sticky notes and posting them on the white 
board at the front of the room. This is a census of the 
classroom because they are gathering data from all 
students in the class.

Given no direction about how to organize the notes, 
the students arbitrarily place them on the board. 

In order to help students think about how to use 
graphical tools to analyze data, the teacher asks the 
students if they are easily able to answer any of the 
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Figure 37: Names clustered by length

posed questions now by looking at the sticky notes, 
and the students say they cannot. The teacher then 
suggests that they think of ways to better organize the 
notes. A student suggests grouping the names accord-
ing to how many letters are in each name. 

The teacher again asks if they can easily answer the 
questions that are posed. The students say they can 
answer some of the questions, but not easily. The teach-
er asks what they can do to make it easier to answer 
the questions. Because the students have been con-
structing graphs since kindergarten, they readily an-
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Figure 38: Preliminary dotplot

swer, “Make a graph!” The teacher then facilitates a 
discussion of what kind of graph they will make, and 
the class decides on a dotplot, given the fact that their 
names are already on sticky notes and given the avail-
able space on the board. Note that this display is not a 
bar graph because bar graphs are made when the data 
represent a categorical variable (such as favorite color). 
A dotplot is appropriate for a numerical variable, such 
as the number of letters in a name.

The teacher then uses computer software to translate 
this information into a more abstract dotplot, as shown 
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in Figure 39. This helps the students focus on the gen-
eral shape of the data, rather than on the particular 
names of the students. 

Interpret Results

The teacher then facilitates a discussion of each ques-
tion posed by the students, using the data displayed 
in the graph to answer the questions. Students also 
add appropriate labels and titles to the graph. The 
teacher helps students use the word “mode” to answer 
the question about the most common name length. 
She introduces the term “range” to help students an-
swer the questions about shortest and longest names. 
Students visualize from the dotplot that there is vari-
ability in name length from individual to individual. 
The range gives a sense of the amount of variability 
in name length within the class. Using the range, we 
know that if the name for any two students are com-
pared, the name lengths cannot differ by more than 
the value for the range.

The teacher then tells the students that there is an-
other useful question they can answer from this data. 
Sometimes it is helpful to know “about how long most 
names are.” For instance, if you were making place 
cards for a class lunch party, you might want to know 
how long the typical name is in order to decide which 
size of place cards to buy. The typical or average name 
length is called the mean. Another way to think of this 
is, “If all of our names were the same length, how long 
would they be?” To illustrate this new idea, the teach-

9876543
Number of Letters in Name

Figure 39: Computer-generated dotplot

er has students work in groups of four, and each child 
takes a number of snap cubes equal to the number of 
letters in his/her name. Then all four children at one 
table put all of their snap cubes in a pile in the middle 
of the table. They count how many cubes they have in 
total. Then they share the cubes fairly, with each child 
taking one at a time until they are all gone or there are 
not enough left to share. They record how many cubes 
each child received. (Students at some tables are able 
to use fractions to show that, for example, when there 
are two cubes left, each person could get half a cube. 
At other tables, the students simply leave the remain-
ing two cubes undistributed.) The teacher then helps 
the students symbolize what they have done by using 
addition to refl ect putting all the cubes in the middle 
of the table and using division to refl ect sharing the 
cubes fairly among everyone at the table. They attach 
the words “mean” and “average” to this idea.

Finally, the students are asked to transfer the data from 
the sticky notes on the board to their own graphs. The 
class helps the teacher generate additional questions 
about the data that can be answered for homework. 
Because the students’ graphs look different, the next 



92

Figure 40: Student-drawn graphs

day the teacher will lead a discussion about the features 
of the various graphs the students have constructed 
and the pros and cons of each.

Valentine’s Day and Candy Hearts

Formulate Questions

As Valentine’s Day approaches, a teacher decides to 
plan a lesson in which children will analyze the charac-
teristics of a bag of candy hearts. To begin the lesson, 
the teacher holds up a large bag of candy hearts and 
asks the children what they know about them from 
prior experience. The children know that the hearts 
are different colors and that they have words on them. 
The teacher asks the children what they wonder about 
the bag of hearts she is holding. The children want to 
know how many hearts are in the bag, what they say, 
and whether there are a lot of pink hearts, because 
most people like pink ones the best. The teacher tells 

the children that they will be able to answer some of 
those questions about their own bags of candy. 

Collect Data

Each child receives a small packet of candy hearts. 
Students are asked how they can sort their hearts, 
and the students suggest sorting them by color—a 
categorical variable. The teacher asks students what 
question this will help them answer, and the students 
readily recognize that this will tell them which color 
candy appears most often in the bag. 

Analyze Data

After sorting the candies into piles and counting and 
recording the number of candies in each pile, the 
teacher guides the students to make a bar graph with 
their candies on a blank sheet of paper. The children 
construct individual bar graphs by lining up all of 
their pink candies, all of their white candies, etc. The 
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Figure 41: Initial sorting of candies

teacher then provides a grid with color labels on the x-
axis and numerical labels on the y-axis so the students 
can transfer their data from the actual candies to a 
more permanent bar graph. 

Interpret Results

After students construct their individual graphs, 
the teacher distributes a recording sheet on which 
each student records what color occurred the most 
frequently (the modal category) and how many of each 
color they had. This is followed by a class discussion in 
which the teacher highlights issues of variability. First, 

C A N D Y H E A R T C O L O R

G R A P H

Purple Pink Orange Green White Yellow

Figure 42: Bar graph of candy color

the students recognize that the number of each color 
varies within a package. Students also recognize that 
their packets of candy are not identical, noting that 
some students had no green hearts while others had 
no purple hearts. Some students had more pink hearts 
than any other color, while other students had more 
white hearts. At Level A, students are acknowledging 
variability between packages—the concept of between 
group variability that will be explored in more detail 
at Level B. The students hypothesize that these varia-
tions in packages were due to how the candies were 
packed by machines. The students also noted differ-
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ences in the total number of candies per packet, but 
found this difference to be small. The student with 
the fewest candies had 12, while the student with the 
greatest number of candies had 15. The teacher asked 
students if they had ever read the phrase “packed by 
weight, not by volume” on the side of a package. The 
class then discussed what this meant and how it might 
relate to the number of candies in a bag.

(Note: Images in this example were adapted from  
www.littlegiraffes.com/valentines.html.)
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Appendix for Level B
Many questionnaires ask for a “Yes” or “No” response. 
For example, in the Level B document, we explored 
connections between whether students like rap mu-
sic and whether they like rock music. To investigate 
possible connections between these two categorical 
variables, the data were summarized in the following 
two-way frequency table, or contingency table.

Table 4: Two-Way Frequency Table

Like Rap Music?

Row 

Like Rock 
Music?

Column Totals

Yes

No

27 6

4 17

31 23

Totals

33

21

54

NoYes                

Since 82% (27/33) of the students who like rock music 
also like rap music, students who like rock music tend 
to like rap music as well. Because students who like 
rock music tend to like rap music, there is an association 
between liking rock music and liking rap music. 

At Level B, we explored the association between 
height and arm span by examining the data in a scat-
terplot, and we measured the strength of the associa-
tion with the Quadrant Count Ratio, or QCR. For the 
height/arm span problem, both variables are numer-
ical. It also is possible to measure the strength and 
direction of association between certain types of cat-
egorical variables. Recall that two numerical variables 
are positively associated when above-average values of 

one variable tend to occur with above-average values 
of the other and when below-average values of one 
variable tend to occur with below-average values of 
the other. Two numerical variables are negatively asso-
ciated when below-average values of one variable tend 
to occur with above-average values of the other and 
when above-average values of one variable tend to oc-
cur with below-average values of the other.

The scatterplot below for the height/arm span data 
includes a vertical line (x = 172.8) drawn through the 
mean height and a horizontal line ( y = 169.3) drawn 
through the mean arm span.

Figure 43: Scatterplot of arm span/height data
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An alternative way to summarize the data would have 
been to ask each student the following two questions:
Is your height above average?
Is your arm span above average?

Note that for these data, the response to each question 
is either “Yes” or “No.”

The 12 individuals in the scatterplot with below-
average height and below-average arm span (Quad-
rant 3) responded “No” to both questions. Because 
their responses to both questions are the same, these 
12 responses are in agreement. The 11 individuals in 
the scatterplot with above-average height and above-
average arm span (Quadrant 1) responded “Yes” 
to both questions. Since their responses to both 
questions are the same, these 11 responses are in 
agreement. When the responses to two “Yes/No” 
questions are the same (No/No) or (Yes/Yes), the 
responses are in agreement.

The one individual with below-average height and 
above-average arm span (Quadrant 2) responded 
“No” to the first question and “Yes” to the second 
question, (No/Yes). Since her/his responses to the 
two questions are different, these two responses 
are in disagreement. The two individuals with above-
average height and below-average arm span (Quadrant 
4) responded “Yes” to the fi rst question and “No” to 
the second question (Yes/No). Since their responses 
to the two questions are different, their responses are 

in disagreement. When the responses to two “Yes/
No” questions are different (No/Yes) or (Yes/No), 
the responses are in disagreement.

For the data in the scatterplot in Figure 43, the results 
to the above two questions can be summarized in the 
following 2x2 two-way frequency table:

Table 19: 2x2 Two-Way Frequency Table

Height above Average?
Row No Yes

Arm 
Span 

Totals

No 12 2 14

Yes   1 11 12
above 

Average?

Column Totals 13 13 26

Notice that there are a total of 23 responses in agree-
ment (12 No/No and 11 Yes/Yes to the height/arm 
span questions), and that these correspond to the 
points in Quadrants 3 and 1, respectively, in the scat-
terplot. Also, there are a total of three responses in dis-
agreement (two Yes/No and one No/Yes), and these 
correspond to the points in Quadrants 4 and 2, respec-
tively. Recall that the QCR is determined as follows:

(Number of Points in Quadrants 1 and 3)
– (Number of Points in Quadrants 2 and 4)

Number of Points in all Four Quadrants
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Restated in terms of Table 19:

QCR =

(Number of Points in Agreement)
– (Number of Points in Disagreement)

Number of Points in all Four Quadrants

Based on this, we can say that two “Yes/No” cat-
egorical variables are positively associated when the 
responses tend to be in agreement—the more obser-
vations in agreement, the stronger the positive asso-
ciation. Negative association between two “Yes/No” 
categorical variables occurs when the responses tend 
to be in disagreement—the more observations in dis-
agreement, the stronger the negative association.

The responses to two “Yes/No” questions can be 
summarized as follows in a two-way frequency table:

Table 20: Two-Way Frequency Table

Question 
2

Column Totals

Question 1 Row 
TotalsNo Yes

No a b r1=a+b

Yes c d r2=c+d

c1=a+c c2=b+d T=
a+b+c+d

Note: a = the number who respond No/No; b = the 
number who respond Yes/No; c = the number who re-
spond No/Yes; d = the number who respond Yes/Yes.

Conover (1999) suggests the following measure of as-
sociation based on a 2x2 table summarized as above.

(a+d) – (b+c)

T
Let’s call this measure the Agreement-Disagreement 
Ratio (ADR). Note that this measure of association is 
analogous to the QCR correlation coeffi cient for two 
numerical variables. 

The ADR for the height/arm span data is:

ADR =
 (12+11) – (2+1) 

= .77
 26

An ADR of .77 indicates a strong positive association 
between height and arm span measurements.

Recall the music example data, which were summa-
rized as follows:
Table 21: Two-Way Frequency Table

                         Like Rap Music?

Row No Yes

Like Rock 
Music?

Column Totals

No

Yes

17  4

 6 27

23 31

Totals

21

33

54

The ADR for the rap/rock data is: 

ADR =
 (17 +27) – (4+6) 

= .63
 54
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An ADR of .63 indicates a fairly strong association 
between liking rock and liking rap music.

Another question presented in Level B was: 

Do students who like country music tend to like or dislike 
rap music?

Data collected on 54 students are summarized in the 
following two-way frequency table:
Table 22: Two-Way Frequency Table

  

                         Like Rap Music?

Row No Yes

Like 
Country 

No

Yes

10 22

13 9

Totals

32

Music?

Column Totals 23 31 54

For these data,

ADR =
 (10+9) – (22+13) 

= –.30
54

An ADR of –.30 indicates a negative association be-
tween liking country music and liking rap music. 

The QCR and the ADR are additive in nature, in that 
they are based on “how many” data values are in each 
quadrant or cell. Conover (1999) suggests the phi coef-
fi cient as another possible measure of association for 
data summarized in a 2x2 table.

Phi = ad − bc
r1r2c1c2

Conover points out that Phi is analogous to Pearson’s 
correlation coeffi cient for numerical data. Both Phi 
and Pearson’s correlation coeffi cient are multiplica-
tive, and Pearson’s correlation coeffi cient is based on 
“how far” the points in each quadrant are from the 
center point.

Recall that in Example 6 of Level C, students inves-
tigated the relationship between height and forearm 
length. The observed data are shown again here as 
Table 14, and the resulting plots and regression analy-
sis are given in Figure 35.

22
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Appendix for Level C
Regression Analysis: Height versus
Forearm 

The regression equation is:

Predicted Height = 45.8 + 2.76 (Forearm)

Table 14: Heights vs. Forearm Lengths

Forearm Height (cm) Forearm Height (cm)
(cm) (cm)

45.0 180.0 41.0 163.0

44.5 173.2 39.5 155.0

39.5 155.0 43.5 166.0

43.9 168.0 41.0 158.0

47.0 170.0 42.0 165.0

49.1 185.2 45.5 167.0

48.0 181.1 46.0 162.0

47.9 181.9 42.0 161.0

40.6 156.8 46.0 181.0

45.5 171.0 45.6 156.0

46.5 175.5 43.9 172.0

43.0 158.5 44.1 167.0

Is the slope of 2.8 “real,” or simply a result of 
the chance variation from the random selection 

Height = 2.76Forearm + 45.8 r2 = 0.64

155
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170
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Figure 35: Scatterplot and residual plot

process? This question can be investigated using 
simulation.

If there were no real relationship between height and 
forearm length, then any of the height values could 
be paired with any of the forearm values with no loss 
of information. In the spirit of the comparison of 
means in the radish experiment, you could then ran-
domly mix up the heights (while leaving the forearm 
lengths as-is), calculate a new slope, and repeat this 
process many times to see if the observed slope could 
be generated simply by randomization. The results of 
200 such randomizations are shown in Figure 44. A 
slope as large as 2.8 is never reached by random-
ization, which provides strong evidence that the 
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observed slope is not due simply to chance variation. 
An appropriate conclusion is that there is signifi cant 
evidence of a linear relationship between forearm 
length and height.

Figure 44: Dotplot showing association
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A high-school class interested in healthy lifestyles car-
ried out a survey to investigate various questions they 
thought were related to that issue. A random sample 
of 50 students selected from those attending a high 
school on a particular day were asked a variety of 
health-related questions, including these two:

Do you think you have a healthy lifestyle?
Do you eat breakfast at least three times a week?

Example 1: A Survey of Healthy Lifestyles

The data are given in Table 23.

Table 23: Result of Lifestyle Question

             Eat Breakfast 
Healthy Yes No
Lifestyle

Yes 19 15

No   5 11

Total 24 26

Total

34

16

50

From these data, collected in a well-designed sample 
survey, it is possible to estimate the proportion of stu-
dents in the school who think they have a healthy life-
style and the proportion who eat breakfast at least three 
times a week. It also is possible to assess the degree of 
association between these two categorical variables. 

For example, in the lifestyle survey previously de-
scribed, 24 students in a random sample of 50 stu-
dents attending a particular high school reported they 
eat breakfast at least three times per week. Based on 
this sample survey, it is estimated that the proportion 
of students at this school who eat breakfast at least 
three times per week is 24/50 = .48 with a margin of 
error of:

2
(.48)(.52)

50
= .14

Using the margin of error result from above (.14), the in-
terval of plausible values for the population proportion 
of students who eat breakfast at least three times a 
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week is (0.34, 0.62). Any population proportion in 
this interval is consistent with the sample data in the 
sense that the sample result could reasonably have 
come from a population having this proportion of 
students eating breakfast. 

To see if the answers to the breakfast and lifestyle 
questions are associated with each other, you can 
compare the proportions of yes answers to the healthy 
lifestyle question for those who regularly eat break-
fast with those who do not, much like the compari-
son of means for a randomized experiment. In fact, 
if a 1 is recorded for each yes answer and a 0 for each 
no answer, the sample proportion of yes answers is 
precisely the sample mean. For the observed data, 
there is a total of 34 1s and 16 0s. Re-randomizing 
these 50 observations to the groups of size 24 and 
26 (corresponding to the yes and no groups on 
the breakfast question) and calculating the differ-
ence in the resulting proportions gave the results 
in Figure 45. The observed difference in sample 
proportions (19/24) – (15/26) = 0.21 was matched 
or exceeded 13 times out of 200 times, for an esti-
mated p-value of 0.065. This is moderately small, 
so there is some evidence that the difference be-
tween the two proprtions might not be a result of 
chance variation. In other words, the responses to 
the health lifestyle question and the eating break-
fast question appear to be related in the sense that 
those who think they have a healthy lifestyle also 
have a tendency to eat breakfast regularly. 

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Mean Difference

Movable line is at 0.21

Healthy lifestyle differences

Figure 45: Dotplot showing differences in sample 
proportions

Example 2: An Experimental Investigation of Pulse Rates

On another health-related issue, a student decided to 
answer the question of whether simply standing for 
a few minutes increases people’s pulses (heart rates) 
by an appreciable amount. Subjects available for the 
study were the 15 students in a particular class. The 
“sit” treatment was randomly assigned to eight of 
the students; the remaining seven were assigned the 
“stand” treatment. The measurement recorded was a 
pulse count for 30 seconds, which was then doubled 
to approximate a one-minute count. The data, ar-
ranged by treatment, are in Table 24. From these data, 
it is possible to either test the hypothesis that stand-
ing does not increase pulse rate, on the average, or to 
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Table 24: Pulse Data

Pulse Group Category

1 62 1 sit

2 60 1 sit

3 72 1 sit

4 56 1 sit

5 80 1 sit

6 58 1 sit

7 60 1 sit

8 54 1 sit

9 58 2 stand

10 61 2 stand

11 60 2 stand

12 73 2 stand

13 62 2 stand

14 72 2 stand

15 82 2 stand

estimate the difference in mean pulse between those 
who stand and those who sit. The random assignment 
to treatments is intended to balance out the unmea-
sured and uncontrolled variables that could affect the 
results, such as gender and health conditions. This is 
called a completely randomized design. 

However, randomly assigning 15 students to two 
groups may not be the best way to balance background 

Table 25: Pulse Data in Matched Pairs

Pulse data: matched pairs

MPSit MPStand Difference

=

1 68 74 6

2 56 55 -1

3 60 72 12

4 62 64 2

5 56 64 8

6 60 59 -1

7 58 68 10

information that could affect results. It may be bet-
ter to block on a variable related to pulse. Since people 
have different resting pulse rates, the students in the 
experiment were blocked by resting pulse rate by pair-
ing the two students with the lowest resting pulse rates, 
then the two next lowest, and so on. One person in 
each pair was randomly assigned to sit and the other to 
stand. The matched pairs data are in Table 25. As in the 
completely randomized design, the mean difference be-
tween sitting and standing pulse rate can be estimated. 
The main advantage of the blocking is that the varia-
tion in the differences (which now form the basis of 
the analysis) is much less than the variation among the 
pulse measurements that form the basis of analysis for 
the completely randomized design.
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In the fi rst pulse rate experiment (Table 24), the 
treatments of “sit” or “stand” were randomly as-
signed to students. If there is no real difference in 
pulse rates for these two treatments, then the ob-
served difference in means (4.1 beats per minute) is 
due to the randomization process itself. To check 
this out, the data resulting from the experiment can 
be re-randomized (reassigned to sit or stand after the 
fact) and a new difference in means recorded. Do-
ing the re-randomization many times will generate 
a distribution of differences in sample means due to 
chance alone. Using this distribution, one can assess 
the likelihood of the original observed difference. 
Figure 46 shows the results of 200 such re-random-
izations. The observed difference of 4.1 was matched 
or exceeded 48 times, which gives an estimated p-val-
ue of 0.24 of seeing a result of 4.1 or greater by chance 
alone. Because this is a fairly large p-value, it can be 
concluded that there is little evidence of any real dif-
ference in means pulse rates between the sitting and 
the standing positions based on the observed data. 

In the matched pairs design, the randomization oc-
curs within each pair—one person randomly as-
signed to sit while the other stands. To assess whether 
the observed difference could be due to chance alone 
and not due to treatment differences, the re-random-
ization must occur within the pairs. This implies that 
the re-randomization is merely a matter of randomly 
assigning a plus or minus sign to the numerical values 
of the observed differences. Figure 47 on the follow-

-12 -8 -4 0 4 8 12
Mean Difference

Movable line is at 4.1

Randomized differences in means; pulse data

Figure 46: Dotplot of randomized differences in means

ing page shows the distribution of the mean differenc-
es for 200 such re-randomizations; the observed mean 
difference of 5.14 was matched or exceeded eight times. 
Thus, the estimated probability of getting a mean dif-
ference of 5.1 or larger by chance alone is 0.04. This 
very small probability provides evidence that the mean 
difference can be attributed to something other than 
chance (induced by the initial randomization process) 
alone. A better explanation is that standing increases 
pulse rate, on average, over the sitting rate. The mean 
difference shows up as signifi cant here, while it did 
not for the completely randomized design, because 
the matching reduced the variability. The differences 
in the matched pairs design have less variability than the 
individual measurements in the completely randomized 
design, making it easier to detect a difference in mean 
pulse for the two treatments. 
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Figure 47: Dotplot of randomized pair difference means
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Vital statistics are a good example of observational 
data that are used every day by people in various walks 
of life. Most of these statistics are reported as rates, so 
an understanding of rates is a critical skill for high-
school graduates. Table 26 shows the U.S. population 
(in 1,000s) from 1990–2001. Table 27 shows the death 
rates for sections of the U.S. population over a period 
of 12 years. Such data recorded over time often are 
referred to as time series data.

Students’ understanding of the rates in Table 27 can 
be established by posing problems such as:
→ Carefully explain the meaning of the number 
1,029.1 in the lower left-hand data cell.

Example 3: Observational Study—Rates over Time

Table 26: U.S. Population (in 1,000s)

Year Total Persons Male Female

1990 249,623 121,714 127,909

1991 252,981 123,416 129,565

1992 256,514 125,247 131,267

1993 259,919 126,971 132,948

1994 263,126 128,597 134,528

1995 266,278 130,215 136,063

1996 269,394 131,807 137,587

1997 272,647 133,474 139,173

1998 275,854 135,130 140,724

1999 279,040 136,803 142,237

2000 282,224 138,470 143,755

2001 285,318 140,076 145,242

→ Give at least two reasons why the White Male and 
Black Male entries do not add up to the All Races 
male entry. 
→ Can you tell how many people died in 2001 based 
on Table 27 alone?

Hopefully, students will quickly realize that they can-
not change from rates of death to frequencies of death 
without knowledge of the population sizes. Table 26 
provides the population sizes overall, as well as for the 
male and female categories. 

Noting that the population fi gures are in thousands 
but the rates are per 100,000, it takes a little thinking 



105

Table 27: U.S. Death Rates (Deaths per 100,000 of Population)

Year

Male

All Races

Female Male

White

Female Male

Black

Female

1990 1202.8 750.9 1165.9 728.8 1644.5 975.1

1991 1180.5 738.2 1143.1 716.1 1626.1 963.3

1992 1158.3 725.5 1122.4 704.1 1587.8 942.5

1993 1177.3 745.9 1138.9 724.1 1632.2 969.5

1994 1155.5 738.6 1118.7 717.5 1592.8 954.6

1995 1143.9 739.4 1107.5 718.7 1585.7 955.9

1996 1115.7 733.0 1082.9 713.6 1524.2 940.3

1997 1088.1 725.6 1059.1 707.8 1458.8 922.1

1998 1069.4 724.7 1042.0 707.3 1430.5 921.6

1999 1067.0 734.0 1040.0 716.6 1432.6 933.6

2000 1053.8 731.4 1029.4 715.3 1403.5 927.6

2001 1029.1 721.8 1006.1 706.7 1375.0 912.5

Figure 48: Scatterplot of death rates
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Figure 49: Scatterplot of actual deaths
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on a student’s part to go from rates to counts by mak-
ing the computation shown in the formula:

Female Deaths

Female Death Rate ⋅
Female Population

100
⎛ 
⎝ 

⎞ 
⎠ =

 

Some time series questions can now be explored. For 
example, how does the pattern of female death rates 
over time compare to the pattern of actual female 
deaths? The plots of Figures 48 and 49 provide a visu-
al impression. The death rates are trending downward 
over time, with considerable variation, but the actual 
deaths are going up.

Students will discover that the picture for males is quite 
different, which can lead to interesting discussions. 

Example 4: Graphs: Distortions of Reality?

Study the graph pictured in Figure 50. Do you see 
any weaknesses in this graphic presentation? If so, de-
scribe them and explain how they could be corrected.

Here are some plausible plots to correct errors of in-
terpretation, and to raise other questions. Better pre-
sentations begin with a data table, such as Table  28, 
and then proceed to more standard graphical displays 
of such data. 

The plot in Figure 51 shows total and African-Ameri-
can enrollments on the same scale. When viewed this 

Figure 50: Distorted graph [source: Athens Banner-Herald]

Table 28: Enrollment Data

Year Total Students African Americans

1996 29404 2003

1997 29693 1906

1998 30009 1871

1999 30912 1815

2000 31288 1856

2001 32317 1832

2002 32941 1825

2003 33878 1897

2004 33405 1845

way, one can see that the latter is a small part of the for-
mer, with little change, by comparison, over the years. 

By viewing African-American enrollments by them-
selves, one can see that the marked decrease between 
1996 and 2002 may be turning around—or leveling off. 

However, the ratio of African American to total en-
rollment is still on the decrease!
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Figure 51: Plot of African-American vs. total enrollments
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Figure 52: Plot of African-American enrollments only
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Figure 53: Ratio of African-American to total enrollments
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