

High School Math Pathways Symposium

Mathematical Modeling and Reasoning: An Advanced Quantitative Reasoning Course

Nov. 9-10, 2021

What is Quantitative Reasoning?

Definition of QR

"Quantitative reasoning (QR) is the application of basic mathematics skills, such as algebra, to the analysis and interpretation of real-world quantitative information in the context of a discipline or an interdisciplinary problem to draw conclusions that are relevant to students in their daily lives. It is not just mathematics."

From Susan Elrod, "Quantitative Reasoning: The Next "Across the Curriculum" Movement," Peer Review, Summer 2014, 16, 3: Retrieved from: https://www.aacu.org/peerreview/2014/summer/elrod

From Susan Elrod, "Quantitative Reasoning: The Next "Across the Curriculum" Movement," Peer Review, Summer 2014, 16, 3: Retrieved from: https://www.aacu.org/peerre view/2014/summer/elrod

Quantitative Reasoning

- What are your predictions for how students will

Quantitative Reasoning

Traditional Mathematics Class	Quantitative Reaso
Skill driven with concepts applied	Concept driven with skills ap
Practice and then apply	Apply and then practice
Context removed, solve problem, insert context	Problem cannot be solved w
Behaviorist approach	Inquiry based
Teacher-centered	Student-centered
Individual-centered	Team-centered
Communication optional	Communication essential
Objects of study are abstract	Objects of study are data
For specific, high-level STEM careers	For all careers, and essential citizenship and personal final

ning Class

pplied

without context

al for good ance decisions

Description of Course

This course is designed to promote reasoning, problem-solving and modeling through thematic units focused on the mathematical practices while reinforcing and extending content in Number and Quantity, Algebra, Functions, Statistics and Probability, and Geometry.

Department

Math Practices

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Follow-on Courses

- CCP Quantitative Reasoning
- AP Statistics
- CCP Introductory Statistics
- CCP Technical Mathematics I
- CCP Mathematics in Elementary Education I
- CCP Introduction to Data Science
- Algebra 2
- Another Math Pathways Course

Equity

For purposes of equity, the rigor of this course must be maintained! This is a more relevant pathway with a different type of pedagogy, not a "less than" pathway.

Rigor

"Students use mathematical language to communicate effectively and to describe their work with clarity and precision. Students demonstrate how, when, and why their procedure works and why it is appropriate. Students can answer the question, 'How do we know?'"

Rigorous courses are	Rigorous courses
Defined by complexity, which is a measure of the thinking, action, or knowledge that is needed to complete the task	Characterized by of a measure of effor complete a task
Measured in depth of understanding	Measured by the a
Opportunities for precision in reasoning, language, definitions, and notation that are sufficient to appropriate age/course	Based on procedu
Determined by students' process	Measured by assign problems
Opportunities for students to make decisions in problem solving	Defined only by th

are not...

difficulty, which is rt required to

amount of work

ire alone

gning difficult

e resources used

Rigorous courses are	Rigorous courses
Opportunities to make connections	Taught in isolation
Supportive of the transfer of knowledge to new situations	Repetitive
Driven by students developing efficient explanations of solutions and why they work, providing opportunities for thinking and reasoning about contextual problems and situations	Focused on getting
Defined by what the student does with what you give them	Defined by what yo student

s are not...

g an answer

ou give the

Themes

Theme 0

- Growth Mindset
- Launching Lessons
- Mindsets
- Math Practices
- Routines
- Convincing, defending, proof

KRON VEIRES

of Education

Credit Cards

6

Functions-Part 1

Functions-Part 2

18

Big Fish Story

Overview of Geometry

Unraveling the Unit Circle

Overview of Statistics

Overview of Probability

Applications

Advanced Quantitative Reasoning **Standards**

Act Blueprint

Reporting Category	Reporting Subcategory	# of Items	% of Test
Integrating Essential Skills (topics learned before 8 th grade using higher complexity)		24-26	40-43%
Preparing for Higher Mathematics		34-36	57-60%
As our group did an analysis, most ACT standards in the 28-32 range are below A2.	Number & Quantity	4-6	7-10%
	Algebra	7-9	12-15%
	Functions	7-9	12-15%
	Geometry	7-9	12-15%
	Statistics and Probability	5-7	8-10%
Modeling		<u>></u> 16	<u>></u> 27%
Total		60	100%

Students said...

"This is the first time— ...math isn't my problem class." ... I understand." ...math makes sense." ... I like math."

A student said...

"I have been able to use my debate skills and have had a better improvement in my chemistry grade because of learning the same problems in this class."

Another teacher said...

"What's DY* doing at the board? He's actually doing work for you! He always sleeps in my class. Any class that makes DY* work must be good, so I need to be in this class."

Pilot Teacher said...

"The class is more rigorous and engaging and thought-provoking than my pre-calculus class."

Pilot Teacher said...

"Although I always knew this was the way I was supposed to teach, I didn't realize that it would make such a huge difference. My students are now excited and eager to try new things and remembering things that they try."

Pilot Teacher said...

"My kids can read the problem or task now, know what questions they want to answer and know what information they need to find and are able to work independently."

Student Voices

Teacher Voices

Share your learning community with us! #MyOhioClassroom **Celebrate educators! #OhioLovesTeachers**

