High School Math Pathways

Anna Cannelongo

Padlet

This session will be recorded, so it can be posted on the Department's website. The recording will begin at the end of this slide.

Math Pathways

D- D Department

Jobs Landscape

Occupational Outlook Handbook ?
Fastest Growing Occupations
Fastest growing occupations: 20 occupations with the highest percent change of employment between 2018-28.
Click on an occupation name to see the full occupationa/ profile.

OCCUPATION	$\hat{*}$	GROWTH RATE, 2018-28			2018 MEDIAN PAY	$\stackrel{*}{*}$
Solar photovoltaic installers				63\%	\$42,680 per year	
Wind turbine service technicians				57\%	\$54,370 per year	
Home health aides			37\%		\$24,200 per year	
Personal care aides			36\%		\$24,020 per year	
Occupational therapy assistants			33\%		\$60,220 per year	
Information security analysts			32\%		\$98,350 per year	
Physician assistants			31\%		\$108,610 per year	
Statisticians			31\%		\$87,780 per year	
Nurse practitioners			28\%		\$107,030 per year	
Speech-language pathologists			27\%		\$77,510 per year	
Physical therapist assistants			27\%		\$58,040 per year	

Genetic counselors	27\%	\$80,370 per year
Mathematicians	26\%	\$101,900 per year
Operations research analysts	26\%	\$83,390 per year
Software developers, applications	26\%	\$103,620 per year
Forest fire inspectors and prevention specialists	24\%	\$39,600 per year
Health specialties teachers, postsecondary.	23\%	\$97,370 per year
Phlebotomists	23\%	\$34,480 per year
Physical therapist aides	23\%	\$26,240 per year
Medical assistants	23\%	\$33,610 per year

Last Modified Date: Wednesday, September 4, 2019

From U.S. Bureau of Labor Statistics: https://www.bls.gov/ooh/fastest-growing.htm

The Jobs Landscape in 2022

E

Top 10 Emerging

1. Data Analysts and Scientists
2. Al and Machine Learning Specialists

3. General and Operations Managers
4. Software and Applications Developers and Analysts
5. Sales and Marketing Professionals
6. Big Data Specialists
7. Digital Transformation Specialists
8. New Technology Specialists
9. Organisational Development Specialists
10. Information Technology Services

Top 10 Declining

1. Data Entry Clerks
```
declining
    roles,
    global
    change
    by }202
```

2. Accounting, Bookkeeping and Payroll Clerks
3. Administrative and Executive Secretaries
4. Assembly and Factory Workers
5. Client Information and Customer Service Workers
6. Business Services and Administration Managers
7. Accountants and Auditors
8. Material-Recording and Stock-Keeping Clerks
9. General and Operations Managers
10. Postal Service Clerks

Higher Education Landscape

Rethinking mathematics courses, curricula and their relationships with other disciplines

OMI's Subgroups
 noea

New and Alternative Pathways

2 Revision of the Ohio Transfer Module Criteria
3 Communication Outreach and Engagement
Data collection, Analysis and Sharing
5
Secondary and Postsecondary Alignment

Higher Education Mathematics Gateway Courses

Entry-Level Math Course

College Algebra to Calculus

Statistics

Possible Major
Alignment
-Business
-Chemistry
-Engineering
-Communication
cCriminal Justice
-Fine Arts

- Nursing
-Nutrition
- Social Work

New Emerging Pathways in Ohio

- Data Science (still being drafted)
- Technical Math (recently posted)
- Discrete Math (recently posted)
- Math for Elementary Education (recently posted)

Research

Students randomly assigned to statistics corequisite courses were 50 percent more likely to graduate from CUNY compared to those randomly assigned to a remedial Algebra course. (Burdman, 2019, Logue 2019)

Statistics was not easier than the Algebra. The statistics students were 39 percent more likely to graduate and were more likely to pass advanced quantitative courses. (Burdman, 2019, Logue 2019)

Research implies that quantitative and statistical pathways have three to four times the success rate of traditional pathways in only half of the time. (Huang, 2018)

Guaranteed Transfer Pathways

Social Work/Social Services/ Human Services Associate of Arts

June 20, 2018

GENERAL EDUCATION REQUIREMENTS/OHIO TRANSFER MODULE	Minimum Credit Hours
ENGLISH COMPOSITION AND ORAL COMMUNICATION:	3
	3
MATHEMATICS, STATISTICS, AND LOGIC:	3
	3
ARTS AND HUMANITIES:	6
+ Course 1: \quad Any OTM approved Arts and Humanities course (Arts related)	3
+ Course 2: Any OTM approved Arts and Humanities course (Humanities related)	3
SOCIAL AND BEHAVIORAL SCIENCES:	6
+ Course 1: I Introduction to Psychology (OSS015)	3
+ Course 2: Introduction to Sociology (OSS021)	3
NATURAL SCIENCES:	6-7
Course 1:Any OTM approved Natural Sciences course	3
	3-4
ADDITIONAL CREDITS:	12
Course 1: A Any OTM approved Second Writing (TME002) course	3
Courses: Up to 9 hours of additional OTM approved courses ${ }^{3}$	9
GENERAL EDUCATION/OHIO TRANSFER MODULE TOTAL:	36-38

https://www.ohiohighered.org/OGTP

Completed	Gateway Course	Completed	Gateway Course
Business - Business Social \& Behavioral Sciences - Anthropology - Economics - Geography - Political Science - Psychology (B.A.) - Psychology (B.S.) - Social Work - Sociology Still Undecided - Social \& Behavior Sciences for Undecided Students	Calc 1 or B. Calc Intro Stats Calc 1 or B. Calc Intro Stats Intro Stats Intro Stats College Algebra Intro Stats Intro Stats Intro Stats	Arts \& Humanities - Art History - Communication Studies - English - History - Music - Philosophy - Studio/Fine Arts - Theatre STEM - Biology - Chemistry - Geology - Mathematics - Physics	QR QR Calc 1

Under Construction

Business

- Applied Business

Social \& Behavioral Sciences

- Socia//Human Services

Arts \& Humanities

- Journalism
- Public Relations/Advertising
- Telecommunications

Education

- AYA
- Middle
- Intervention Specialist
- ECE

Public Safety

- Fire Science/EMT
- EMS/Paramedic
- Criminal Justice

Health Sciences

- Dietetics
- Exercise Science/OT/PT
- Health Information Management
- Medical/Clinical Laboratory
- Nursing
- Respiratory Therapy

STEM

- Aerospace, Agricultural \& Mechanical Engineering
- Civil Engineering
- Civil/Construction Engineering Technology
- Computer/Electrical Engineering
- Computer Science
- Information Systems
- Information Technology

The Problem

\checkmark College Algebra was not meeting the needs of all students
\checkmark Coherence between high school and college math
\checkmark The workforce recognizes that all students need reasoning skills to be successful

Other States

California University Systems

Students in 11th and $12^{\text {th }}$ Grade can take other courses to satisfy the third math credit.

Examples of such courses include, but are not limited to, applied mathematics, calculus, computer science, data science, discrete mathematics, linear algebra, pre-calculus (analytic geometry and mathematical analysis), probability, statistics and trigonometry

K-12 Landscape

\#EachChildOurFuture

In Ohio, each child is challenged, prepared and empowered.

Each Child, Our Future

Vision 장

In Ohio, each child is challenged to discover and learn, prepared to pursue a fulfilling post-high school path and empowered to become a resilient, lifelong learner who contributes to society.

Each Child, Our Future

One Goal

Ohio will increase annually the percentage of its high school graduates who, one year after graduation, are:

Each Child, Our Future

One Goal

- Enrolled and succeeding in a post-high school learning experience, including an adult career-technical education program, an apprenticeship and/or a two-year or four-year college program;
- Serving in a military branch;
- Earning a living wage; or
- Engaged in a meaningful, self-sustaining vocation.

Diverse career aspirations, one math pathway!

Algebra 2

Equity

Roadblock

Algebra 2

Not meeting the need for ALL students

New Initiative: Strengthening Ohio's High School Math Pathways

Equivalence

Mathematics units must include one unit of Algebra 2 or the equivalent of Algebra 2.

Equivalence

Equivalent thinking and reasoning but NOT equivalent content

Ohio Secondary and Postsecondary Math Faculty have come together to define rigor which is the basis of creating equivalent courses.

Rigor

It has been decided that equivalent refers to the level of rigor and reasoning, not content. There are many branches of mathematics that are equally rigorous but have different content focuses. All equivalent courses should have the same level of rigor and reasoning that are needed to be successful in an entry-level, creditbearing postsecondary mathematics course.
Ohio has defined rigor as the following:

- "Students use mathematical language to communicate effectively and to describe their work with clarity and precision. Students demonstrate how, when and why their procedure works, and why it is appropriate. Students can answer the question, 'How do we know?'"

Goals of Initiative

Ohio needs to develop pathways for high school mathematics that provide a seamless transition to a student's postsecondary aspirations.

1. To promote equity, any courses that are created should be equally rigorous to the traditional math pathway.
2. Pathways should be relevant to a student's future career goals. Not only will relevant courses help a student achieve their goals, but they will also create more buy-in from the students and help develop a positive math identity.
3. Pathways should also be flexible in case a student changes his or her mind about his or her future plans.
4. Pathways should be coherent with pathways in higher education to provide students with a seamless transition.

What this initiative is NOT about

Changing graduation requirements
Reducing rigor

Tracking

What is this initiative about?

Relevance

Equity

Rigor

Math Identity

Student Success!!

Ohio's High School Math Pathways

Districts may offer 1 or more courses listed in addition to Algebra 2.

Potential Careers

Algebra 2

DoctorNeterinarian	Financial Manager
Engineer	Scientist
Farm Manager	

Statistics and Probability
Human Resource Manager Political Scientist Medical Technician Social Worker
Nurse firefighter

Data Science and Foundations
Software Quality Assurance Public Relations Specialist Journalist
Marketing Research Analyst
Sales Representative
Discrete Math / Computer Science
Computer Systems Analyst Software Developer
Computer Support Specialist Web Developer Cybersecurity Analyst

Quantitative Reasoning
Elementary School Teacher
Graphic Designer lighting/Set Designer Construction Tradesperson

Descriptions of Courses

COURSE	DESCRIPTION
Statistics and	In-depth study of probability, data analysis, and statistics including applying the concept of frandom variables to generate and interpret probability distributions, transforming data to aid in interpretation and prediction, and testing hypotheses using appropriate statistics
Quantitative	Application of mathematics skills such as algebra to the analysis and interpretation of quantitative information (numbers and units) in a real-world context to make decisions that are relevant to daily life. Critical thinking is its primary objective and outcome.
Reasoning	Data Science Sata Science is a blend of various tools, algorithms, and machine learning principles with the goal to discover hidden patterns from raw data. The difference between data science and statistics is that where statistics focuses on explaining the data, data science focuses on using data to make predictions and decisions.
Discrete Math	The study of mathematical properties of sets and systems that have a countable number of elements including applications of systematic counting techniques and algorithmic thinking to represent, analyze, and solve problems.

Why these courses?

Statistics \&
Probability

- It aligns to a primary higher-education math pathways course.
- There is a need for a statistically literate society.
- It aligns to a primary higher-education math pathways course.

Quantitative Reasoning

- The reasoning and communication around quantitative information is what is needed in both higher education math courses and careers.
- Students positively respond to the pedagogy underlying the course.
- There are many, many emerging jobs around big data requiring various levels of education and this course exposes students to foundational concepts of data science.
- With the rise of big data, understanding data is essential for citizenship and to understand our world.
- It aligns to a higher-education math pathways course.
- Note: Students who want to pursue a Data Science degree requiring Calculus should take Algebra 2 as a follow-on course.

Why these courses?

- There are many, many jobs in computer science and technology and students need exposure to these concepts.
- More students will have access to computer science concepts because math teachers can teach the course.
- By Ohio law students can use Advanced Computer Science to satisfy the Algebra 2 curricular requirement. However, Advanced Computer Science does not need to contain any advanced mathematics.
- Most jobs in computer science and technology need some knowledge of advanced mathematics and computational thinking.
- Discrete Math is the mathematics of computer science. Integrating Discrete Math into a computer science course gives students the reasoning they need to be successful in a computer science field.
- Note: Students who want to pursue a computer science major requiring calculus should also take Algebra 2 in tandem with AP Computer Science A as follow-on courses.

Equity

Students choose pathways based on their future aspirations. Students are NOT placed based on perceived preparation levels.

Tre is undecided about his future. He likes fixing things but has not always had positive experiences with math.

Year Three

He takes a quantitative reasoning class and his interest in math grows when it is applied to the real world. Tre would like to pursue the engineering field.

Year Four

Tre decides to take Algebra 2 and move into the calculus-based STEM path.

The electronics area has always fascinated Mia but she doesn't take an interest in math while at school.

Year Three

Mia takes a quantitative reasoning class and finds out that she really likes math when it is connected to realworld applications.

Year Four

She decides to pursue an associate degree in engineering technology and takes College Credit Plus Technical Math 1.

Hana is undecided about her future but has always held a passion for English language arts.

Year Three

While she is undecided, Hana elects to take a quantitative reasoning class.

Year Three

He takes quantitative reasoning and is amazed how math connects to art. He wants to major in graphic design.

Year Four

Noah takes a College Credit Plus quantitative reasoning class for dual credit.

Changing from A STEM to a Non-STEM Major

Key Findings from National \& State Studies

- Of students who entered four-year Ohio public colleges in fall 1998, most (95%) students intending to major in non-STEM fields stayed in nonSTEM fields with only 5\% changing to STEM majors (Bettinger, 2010).
- An analysis of first-time students enrolled in postsecondary education examined student entrance, persistence, and attainment in STEM fields from 1995 to 2001 (Chen, 2009). The study found 36% of intending STEM students changed their majors to non-STEM fields and 7\% of intending non-STEM students changed their majors to STEM fields.

Changing from A STEM to a Non-STEM Major

Key Findings from National \& State Studies

- Enrollment and completion data from the National Student Clearinghouse from 2004 to 2010 revealed that of the 34,616 students who graduated with a STEM degree, only 17% had originally intended to pursue a non-STEM major (Eagan, Hurtado, Figueroa, \& Hughes, 2014).
"The evidence from these studies overwhelmingly shows that the vast majority of students who start in a non-STEM field will remain in a similar field. Therefore, institutions should design normative practice of mathematics pathways to serve the needs of the greatest number of students possible and ensure that appropriate options exist for students who change to STEM majors."
- Course Development

Fall 2021

- The initiative is launched on the website.
- Quantitative Reasoning and Data Science Foundations are piloted.

Fall 2022

- Schools implement pathways and Algebra 2 equivalency courses.
- Computer Science/Discrete Math piloted.
- Quantitative Reasoning and Data Science Foundations Pilots are expanded in phases across the state.

Toolkits

- Counselors
- Administrators
- Parents
- Teachers

Ohio

Contact Information

Name	Phone	
Email		
Annie Cannelongo	$614-644-5905$	Anna.Cannelongo@education.ohio.gov
Annika Moore	$614-728-2373$	Annika.Moore@education.ohio.gov
Brian Bickley	$614-644-6814$	Brian.Bickley@education.ohio.gov
Yelena Palayeva	$614-387-7561$	$\underline{\text { Yelena.Palayeva@education.ohio.gov }}$

f (

@OHEducation

Share your learning community with us! \#MyOhioClassroom

Celebrate educators! \#OhioLovesTeachers

