Quality Program Review
Voluntary Workshop · Spring 2022
What is the Quality Program Review?

The Ohio Department of Education (Department) and the lead district of each career-technical planning district shall conduct an annual review of each career-technical education program in the lead district's career-technical planning district that receives approval under this section.

[ORC 3317.161]
Quality Program Review Key Points

- QPR is an improvement tool
- Data may be inherited
- It takes a village
Accountability Landscape

Three levels of Accountability in CTE

- Federal → Perkins & CLNA
- State → CTPD Report Card
- Local → Quality Program Review

All three have similar and different calculation methods, policies, and data uses.
QPR Measures

<table>
<thead>
<tr>
<th>FY2021 and Beyond (Aligned to Report Card)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Skill Attainment (includes participation)</td>
</tr>
<tr>
<td>Post Program Placement</td>
</tr>
<tr>
<td>Work-based Learning</td>
</tr>
</tbody>
</table>
Technical Skill Attainment

Technical Skill Attainment measures the percentage of career-technical education concentrators who, in the reporting year, achieve the cumulative passing rate for the state-recognized technical skill assessment aligned with their programs of concentration.
Technical Skill Attainment

<table>
<thead>
<tr>
<th>Student Grade</th>
<th>Concentrator Status</th>
<th>Work Force Development Course Taken</th>
<th>Calculated Assessments</th>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>N</td>
<td>(DD*)1</td>
<td>No calculation</td>
<td>The student completed only one workforce development course and is not a concentrator.</td>
</tr>
<tr>
<td>10</td>
<td>Y</td>
<td>(DD)2</td>
<td>(DD)1, (DD)2</td>
<td>The student has completed the second workforce development course, becomes a concentrator and enters the calculation.</td>
</tr>
<tr>
<td>11</td>
<td>Y</td>
<td>(DD)3</td>
<td>(DD)1, (DD)2, (DD)3</td>
<td>The student completes additional courses. All current and previous assessment scores are included in the calculation.</td>
</tr>
<tr>
<td>12</td>
<td>Y</td>
<td>(DD)4</td>
<td>(DD)1, (DD)2, (DD)3, (DD)4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student Grade</th>
<th>Concentrator Status</th>
<th>WFD Course Taken</th>
<th>Calculated Assessments</th>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Y</td>
<td>(DD)1, (DD)2</td>
<td>(DD)1, (DD)2</td>
<td>The student has completed two workforce development courses, becomes a concentrator and enters the calculation.</td>
</tr>
<tr>
<td>12</td>
<td>Y</td>
<td>(DD)3, (DD)4</td>
<td>(DD)1, (DD)2, (DD)3, (DD)4</td>
<td>The student completes additional courses. All current and previous assessment scores are included in the calculation.</td>
</tr>
</tbody>
</table>
Work-based Learning

Work-based Learning measures the percentage of career-technical education concentrators in the graduation cohort having participated in a minimum of 250 hours of work-based learning.
Post-Program Placement

Post-Program Placement measures the percentage of career-technical education concentrators who, in the second quarter after exiting secondary education, are in postsecondary education or advanced training; are in a military service or service program that receives assistance under Title I of the National and Community Service Act of 1990 (42 U.S.C 12511 et seq.); are volunteers as described in section 5(a) of the Peace Corps Act (22 U.S.C 2504(a)); or are employed.
Perkins V Changes

• Concentrator Definition
• Work-based Learning
 – Low threshold
 • Favor high quality experience over number of students
 • Example: 15% = 3 students in a 20-concentrator pathway
• Technical Skill Attainment Current Year Measure
Dashboard

- Technical Skill Attainment: 82%
- Work-based Learning: 11%
- Post-Program Placement: 91%
QPR Measures

• Alignment to CTPD Report Card measures and Perkins V
• Work-based Learning
 – Hold Harmless thru QPR 2024 Data
 – Low threshold
 • Favor high quality experience over number of students
 • Example: 15% = 3 students in a 20-concentrator pathway
• Technical Skill Attainment Business Rules
QPR Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Performance Levels and Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPR 2021 Data</td>
</tr>
<tr>
<td>Technical Skill Attainment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020-21 Concentrator</td>
</tr>
<tr>
<td>Work-Based Learning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020 Graduation Cohort Graduates</td>
</tr>
<tr>
<td>Post-Program Placement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentrators who left Secondary Education Academic Year 2019-2020</td>
</tr>
</tbody>
</table>
Current State – Hold Harmless

<table>
<thead>
<tr>
<th>Measure</th>
<th>Performance Levels and Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPR 2021 Data</td>
</tr>
<tr>
<td>Technical Skill Attainment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020-21 Concentrator</td>
</tr>
<tr>
<td>Work-Based Learning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020 Graduation Cohort Graduates</td>
</tr>
<tr>
<td>Post-Program Placement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentrators who left Secondary Education Academic Year 2019-2020</td>
</tr>
</tbody>
</table>
Work-based Learning

<table>
<thead>
<tr>
<th>Measure</th>
<th>Performance Levels and Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPR 2021 Data</td>
</tr>
<tr>
<td></td>
<td>Concentrator</td>
</tr>
<tr>
<td>Work-Based Learning</td>
<td>2020 Graduation Cohort Graduates</td>
</tr>
<tr>
<td>Post-Program Placement</td>
<td>Concentrators who left Secondary Education Academic Year 2019-2020</td>
</tr>
</tbody>
</table>
QPR Accountability Timeline

<table>
<thead>
<tr>
<th>Measure</th>
<th>Performance Levels and Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPR 2021 Data</td>
</tr>
<tr>
<td>Technical Skill Attainment</td>
<td>2020-21 Concentrator</td>
</tr>
<tr>
<td>Work-Based Learning</td>
<td>2021-22 Concentrator</td>
</tr>
<tr>
<td></td>
<td>2022-23 Concentrator</td>
</tr>
<tr>
<td></td>
<td>2023-24 Concentrator</td>
</tr>
<tr>
<td></td>
<td>2024-25 Concentrator</td>
</tr>
<tr>
<td></td>
<td>2020 Graduation Cohort Graduates</td>
</tr>
<tr>
<td></td>
<td>2021 Graduation Cohort Graduates</td>
</tr>
<tr>
<td></td>
<td>2022 Graduation Cohort Graduates</td>
</tr>
<tr>
<td></td>
<td>2023 Graduation Cohort Graduates</td>
</tr>
<tr>
<td></td>
<td>2024 Graduation Cohort Graduates</td>
</tr>
<tr>
<td>Post-Program Placement</td>
<td>Concentrators who left Secondary Education Academic Year 2019-2020</td>
</tr>
<tr>
<td></td>
<td>Concentrators who left Secondary Education Academic Year 2020-2021</td>
</tr>
<tr>
<td></td>
<td>Concentrators who left Secondary Education Academic Year 2021-2022</td>
</tr>
<tr>
<td></td>
<td>Concentrators who left Secondary Education Academic Year 2022-2023</td>
</tr>
<tr>
<td></td>
<td>Concentrators who left Secondary Education Academic Year 2023-2024</td>
</tr>
</tbody>
</table>
QPR Horizon

- 5-year horizon
- Technical support/action required beginning with 1st year non-compliance

<table>
<thead>
<tr>
<th>Step</th>
<th>Action Item</th>
<th>Survey</th>
<th>Required Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Workshop (recommended) Action Plan 1 (AP1)</td>
<td>Quality Program Standards</td>
<td>Teacher/Administrator</td>
</tr>
<tr>
<td>2</td>
<td>Workshop – Review/Revise AP1 and write Action Plan 2 (AP2)</td>
<td>TBD</td>
<td>Teacher/Administrator</td>
</tr>
<tr>
<td>3</td>
<td>Workshop – Review/Revise AP1 & AP2 and write Action Plan 3 (AP3)</td>
<td>TBD</td>
<td>Team</td>
</tr>
<tr>
<td>4</td>
<td>Workshop – Review/Revise Action Plans 1-3</td>
<td>Provide Supporting Data</td>
<td>Team</td>
</tr>
<tr>
<td>5</td>
<td>On-site Evaluation</td>
<td>Quality Program Standards and Supporting Data</td>
<td>Team</td>
</tr>
</tbody>
</table>
Reset

All pathways start over with the QPR 2022 Data Set

<table>
<thead>
<tr>
<th>Performance Indicators</th>
<th>Performance Levels & Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPR 2021 Data</td>
</tr>
<tr>
<td>Work-Based Learning</td>
<td>2020 Graduation Cohort</td>
</tr>
<tr>
<td>Post-Program Placement</td>
<td>Concentrators who left Secondary Education Academic Year 2019-2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Action Item</th>
<th>Survey</th>
<th>Required Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Workshop (recommended) Action Plan 1 (AP1)</td>
<td>Quality Program Standards</td>
<td>Teacher/ Administrator</td>
</tr>
</tbody>
</table>
Resources

CAREER TECH

How Do I...?
- Find a career technical school?
- Find Career-Tech online resources?
- Review career-tech's new content standards?
- Earn college credit in high school?
- Link my interests to a future career?
- Access Ohio Means Jobs K-12
- Start a Career-Tech program?

LATEST NEWS
Department seeks educators to help develop Ohio's State Tests by participating on assessment committees
Two additional graduation options available for the classes of 2018 and 2019
Resources

Career Readiness Tools

» Industry-Recognized Credentials
» Career-Technical Education Senior Only Credential Program
» Apprenticeships and Internships
» Career Connections and OhioMeansJobs K-12
Resources

Compliance, Funding, and Accountability

- Career-Tech Consultant Assignments
- Perkins V
- Compliance and Funding
- CTE-26 Process
- Career-Technical Education Quality Program Review
- Data and Accountability

Programming

- Career-Tech Teacher Preparation and Licenses
- Educator Licensure for Veterans and Active Duty Service Members
- Equity in Career-Technical Education
- SB 166 Tax Credit Certificate Program for Work-Based Learning Experiences

Presentations

Career-Tech Video Resources
Resources

Career-Technical Education Data and Accountability

Perkins V requires Ohio to set state performance measures for a required set of indicators of performance for career-technical education concentrators. The data reported by schools and districts provides standards to evaluate whether learners are on track for and progressing through their career pathways.

Accountability

» Career-Technical Education Data and Accountability Guidebook

» 2020-21 Approved CTE Courses
 • 2019-20
 • 2018-19
 • 2017-18

» State-Determined Performance Levels Summary

» Ohio School Report Cards

» Concentrator Reporting Examples Matrix

» CTE Program and Assessment Matrix
QPR Resources

Resources

» Ohio's Quality Program Standards for Career-Technical Education Programs
» Action Plan Goal Template
» Quality Program Standards Survey Template
Accessing the CTE Compliance System

New users must have access to the SAFE account to access the CTE 26 portal. A SAFE account can be obtained at this link https://safe.ode.state.oh.us/portal/.

To access the CTE 26 portal, you must have one of the following roles assigned to you in the Ohio Educational Directory System (OEDS-R): Superintendent, Superintendent Designee, Director of Career Technical Education General, or Supervisor Career Technical Education General.

Career-Technical Planning District personnel accessing the CTE 26 portal to review member Districts’ program review information must have one of the following roles assigned in the Ohio Education Directory System (OEDS-R) under the Career-Technical Planning District organization IRN: Superintendent, Superintendent Designee.
Ohio’s Quality Program Standards for Career-Technical Education Programs

Standard 1: Instructional Facilities and Resources: The facility supports implementation of the career-technical program and provides students with opportunities for the development and application of technical knowledge and skills.

Standard 2: School and Community Relations: School, community, and industry partners are engaged in developing and supporting the career-technical education program.

Standard 3: Program Planning and Evaluation: A results-driven needs assessment and evaluation exists for continual program development, improvement, and alignment with labor market needs.

Standard 4: Educators that Contribute to the Profession: Career-Technical educators continuously develop as professionals and support the growth of the profession they serve.

Standard 5: Curriculum and Program Design: The career-technical education program includes foundational and specialized courses designed to prepare each student for lifelong learning within a career pathway.

Standard #6: Instruction: Career-Technical Education programs promote high academic achievement, technical knowledge and skill development of all students.

Standard #7: Assessment: Career-Technical education programs use authentic and performance-based assessments to measure student learning and skill attainment of Ohio’s Career Field Technical content standards.

Standard #8: Experiential Learning Experience Programs: All students participate in an experiential learning program that connects the technical knowledge and skills learned in both classroom and laboratory to the work place.

Standard #9: Leadership Development/CTSO: Students participate in intra-curricular Career-Technical Student Organization (CTSO) that promotes cognitive knowledge and skill and leadership development.

Standard #10: Equitable Student Access: Career-technical education programs serve each student interested in preparing for a career in any of Ohio’s 16 Career Fields and are reflective of the school’s student population. Capacity should permit students to schedule first choices of career area.
Ohio’s Quality Program Standards for Career-Technical Education Programs

Standard #6: Instruction

Standard Statement: Career-Technical Education programs promote high academic achievement, technical knowledge and skill development of all students.

Standard Definition: Educators develop differentiated instructional plans that are rigorous and relevant, and represent real-work knowledge and skills. The rigor of instruction represents current industry needs and prepares each student for workplace and post-secondary options. Instruction incorporates core academic requirements and promotes academic and technical skill attainment. Instruction is designed and delivered with each student in mind, meeting the needs of the individuals in the classroom.

<table>
<thead>
<tr>
<th>QUALITY INDICATOR</th>
<th>EXEMPLARY</th>
<th>EFFECTIVE</th>
<th>MINIMAL</th>
<th>UNSATISFACTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Instruction balances between inquiry-based classroom and laboratory instruction, experiential learning, and engagement in the Career Technical Student Organization.</td>
<td>A documented balance exists between inquiry-based classroom and laboratory instruction, experiential learning and engagement in the student organization.</td>
<td>There is an attempt to balance inquiry-based classroom and laboratory instruction, experiential learning, and engagement in the student organization, but two of the three components dominate the instruction.</td>
<td>One component of the curriculum clearly is dominating the instruction. The instructor(s) has a plan to bring deficient areas into balance.</td>
<td>None of these components are apparent in the instruction.</td>
</tr>
<tr>
<td>2. Instructional activities provide equitable opportunities for each to demonstrate technical skills and develop critical higher order thinking. Evidence: (e.g., lesson plans, activity descriptions)</td>
<td>Instructional activities promote the transfer of technical knowledge and skill to different situations and applications, and to students of all backgrounds and abilities.</td>
<td>Instructional activities require each student to apply higher order technical skills.</td>
<td>Instructional activities require students to demonstrate knowledge and application-based technical skills.</td>
<td>Students are not provided opportunities to master technical skills.</td>
</tr>
<tr>
<td>3. Instruction reinforces the application of relevant and rigorous career-technical learning standards. Evidence: (e.g., lesson plans)</td>
<td>Instruction consistently incorporates related career-technical learning standards.</td>
<td>Instruction focuses on academic skills and connects with career-technical learning standards.</td>
<td>Instruction focuses on academic skills.</td>
<td>Instruction does not address academic skills.</td>
</tr>
</tbody>
</table>
Ohio’s Quality Program Standards for Career-Technical Education Programs

Standard #6: Instruction

Standard Statement: Career-Technical Education programs promote high academic achievement, technical knowledge and skill development of all students.

Standard Definition: Educators develop differentiated instructional plans that are rigorous and relevant, and represent real-work knowledge and skills. The rigor of instruction represents current industry needs and prepares each student for workplace and post-secondary options. Instruction incorporates core academic requirements and promotes academic and technical skill attainment. Instruction is designed and delivered with each student in mind, meeting the needs of the individuals in the classroom.

<table>
<thead>
<tr>
<th>QUALITY INDICATOR</th>
<th>EXEMPLARY</th>
<th>EFFECTIVE</th>
<th>MINIMAL</th>
<th>UNSATISFACTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Instruction balances between inquiry-based classroom and laboratory instruction, experiential learning, and engagement in the Career Technical Student Organization.</td>
<td>A documented balance exists between inquiry-based classroom and laboratory instruction, experiential learning and engagement in the student organization.</td>
<td>There is an attempt to balance inquiry-based classroom and laboratory instruction, experiential learning, and engagement in the student organization, but two of the three components dominate the instruction.</td>
<td>One component of the curriculum clearly is dominating the instruction. The instructor(s) has a plan to bring deficient areas into balance.</td>
<td>None of these components are apparent in the instruction.</td>
</tr>
<tr>
<td>2. Instructional activities provide equitable opportunities for each to demonstrate technical skills and develop critical higher-order thinking. Evidence: (e.g., lesson plans, activity descriptions)</td>
<td>Instructional activities promote the transfer of technical knowledge and skill to different situations and applications, and to students of all backgrounds and abilities.</td>
<td>Instructional activities require each student to apply higher order technical skills.</td>
<td>Instructional activities require students to demonstrate knowledge and application-based technical skills.</td>
<td>Students are not provided opportunities to master technical skills.</td>
</tr>
<tr>
<td>3. Instruction reinforces the application of relevant and rigorous career-technical learning standards. Evidence: (e.g., lesson plans)</td>
<td>Instruction consistently incorporates related career-technical learning standards.</td>
<td>Instruction focuses on academic skills and connects with career-technical learning standards.</td>
<td>Instruction focuses on academic skills.</td>
<td>Instruction does not address academic skills.</td>
</tr>
</tbody>
</table>
Ohio’s Quality Program Standards for Career-Technical Education Programs

Standard 5: Curriculum and Program Design

<table>
<thead>
<tr>
<th>QUALITY INDICATOR</th>
<th>EXEMPLARY</th>
<th>EFFECTIVE</th>
<th>MINIMAL</th>
<th>UNSATISFACTORY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An approved course of study is current and based on industry validated technical content standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The program is logically organized, including course descriptions and sequences, industry validated technical content standards, prerequisites and staffing assignments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Technical content is aligned with academic content standards.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>Need to align lesson plans with WebXam blueprint and credentials.</td>
</tr>
<tr>
<td>Evidence: (e.g., lesson plans, course of study, cross walk, Standards By Design alignment documents)</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Program has approved CTE2S, which includes curriculum, post secondary articulation, industry recognized credential options, experiential learning opportunities and CTSO affiliation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis and Quality Improvements
Five Whys
Fishbone Diagram
Action Plans

- **SMART Goal**: Insert the previously written SMART Goal here.
- **Strategy**: The Strategy is the action the district will take to achieve the goal in the timeline.
- **Data Indicators**: Data Indicators are measures to track how successfully the strategy is being implemented.
- **Action Steps**: Action Steps break the strategy down into tasks. Assign a responsible party and align to data sources from data indicators.
- **Standard and Indicator**: Write in the Standard and Indicator for this goal.
- **Progress Measures**: Progress Measures are check-ins for the Data Indicators. Set dates and projected data points to measure the data indicators.
- **Sustaining Success**: Sustaining Success is where districts will indicate how they will maintain the success of the action steps so they do not need to be monitored in the future.
Utilizing Blueprints as a Tool in Quality Program Review
End of Course Blueprints

✓ Identifies a map of content
✓ Can reveal days of instruction
✓ Guides instruction when combined with WebXam Outcome Reports
✓ Identifies the percentage of test questions generated in outcomes
Blueprints

https://www.webxam.org/public/AboutTheTests

1. All Career Fields

2. All courses

3. All Pathways reveal test, performance standards and # questions on the test
Using Blueprints to Guide Instruction

1. Look at outcomes

2. Identify % items approved

3. Determine the number of days of instruction
 \[= \% \text{ items} \times \text{total \# days available for instruction} \ (170) \]

4. Look up competencies in the course in the outcome

5. Develop lesson plans using the competencies in the outcome within the calculated days of instruction
Pacing Guide

<table>
<thead>
<tr>
<th>Order to teach</th>
<th>Unit: Animal Science</th>
<th>Outcome</th>
<th>Competencies covered</th>
<th>Competency existence in other Units</th>
<th>% on WebXam</th>
<th>Days to teach</th>
<th>Last year's WebXam</th>
<th>Summative Assessment Scores & Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.1</td>
<td>1.1.3, 1.1.4</td>
<td>Production Agriculture & Agribusiness, Industrial Technology and Safety, Biotechnology, Food Science, Plant and Horticulture Science, Natural Resources, SAE & Record Keeping, FFA 1.1.3, 1.1.4</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
<td>2.3.1, 2.3.2</td>
<td></td>
<td>13.33%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EOC Outcome Reports

Outcome Report Year: 2020 - 2021; **Teacher(s):** Phoenix ROSS; **Test:** 010105 Agriculture, Food and Natural Resources

<table>
<thead>
<tr>
<th>Test</th>
<th>Teacher First Name</th>
<th>Teacher Last Name</th>
<th>Code</th>
<th>Outcome</th>
<th>Your Students</th>
<th>Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>01.02</td>
<td>Leadership and Communications: Process, maintain, evaluate and disseminate information</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>01.09</td>
<td>Financial Management: Use financial tools, strategies and systems to manage organization</td>
<td>77.5%</td>
<td>76%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>01.12</td>
<td>Site and Personal Safety Procedures: Follow site and personal safety procedures</td>
<td>62.5%</td>
<td>85%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>03.01</td>
<td>Handling, Preparation, Transportation, Storage and Disposal: Handle, prepare, transport,</td>
<td>59%</td>
<td>65%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>03.04</td>
<td>Molecular-Gene Technology: Apply knowledge of nucleic acid structures</td>
<td>37.5%</td>
<td>72%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>04.01</td>
<td>Tool, Stationary and Mobile Equipment Maintenance: Inspect, clean, maintain, and operate</td>
<td>52.5%</td>
<td>53%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>04.03</td>
<td>Engines: Apply concepts to service components of both small and large</td>
<td>76%</td>
<td>80%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>05.03</td>
<td>Design and Estimate: Plan and design a basic site plan for a desired outcome</td>
<td>50%</td>
<td>55%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>05.06</td>
<td>Construction: Follow architectural plans to construct and repair structures</td>
<td>50%</td>
<td>45%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>05.10</td>
<td>Joining and Cutting Metals with Heat: Join and cut steel using heat in the manufacturing</td>
<td>57.5%</td>
<td>47%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>07.02</td>
<td>Quality Assurance: Inspect the food production process, locate potential</td>
<td>87.5%</td>
<td>86%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>07.05</td>
<td>Food Product Development: Apply principles of nutrition and human needs</td>
<td>44%</td>
<td>75%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>08.01</td>
<td>Plant Nutrition: Select and apply macronutrients and micronutrients</td>
<td>60.5%</td>
<td>50%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>08.04</td>
<td>Growth and Management: Manage and manipulate plant development</td>
<td>51%</td>
<td>58%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>09.01</td>
<td>Energy Sources: Identify energy sources according to their economic</td>
<td>41%</td>
<td>58%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>02.03</td>
<td>Care and Management: Apply animal care and management procedures</td>
<td>73%</td>
<td>81%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>06.01</td>
<td>Soils: Apply knowledge of soil characteristics and soil information</td>
<td>54%</td>
<td>74%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>06.02</td>
<td>Water Quality: Analyze, interpret and manage the biological, chemical</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>010105</td>
<td></td>
<td></td>
<td>06.11</td>
<td>Habitat Management and Restoration: Develop a plan for the management</td>
<td>37.5%</td>
<td>64%</td>
</tr>
</tbody>
</table>
2.3.1. Identify species-specific terminology based on gender and age.
2.3.2. Identify, classify, evaluate and select animal species or breeds for a desired outcome.

Review instructional materials, review summative and formal assessments during unit instruction

Reflect on the data and identify gaps where students perform lower than the state average

Determine factors impacting results

QPR Standards:
Standard 5: Curriculum and Program Design
Standard #6: Instruction
Standard #7: Assessment
Why Work-Based Learning?

- Business & Industry Need
- Policy & Legislation
- Implementation

Governor's Office of Workforce Transformation
Ohio Exce$$
Labor Market Data
Each Child Our Future; Graduation Requirements
Perkins V & CTE
Minor Labor Laws; SB 166; State Supported Internships
Work-Based Learning & Career-Tech

Perkins V
- Definition
- Performance Indicator

Ohio Law
- Grad Requirements
- CTPD Report Card
- HB 82 – Prepared for Success

CTE
- Sustained interactions with industry & community professionals
- Aligned to curriculum and instruction – i.e., program of study
- Working towards 250+ hours across grades 9-12

There is a broad range of flexibility in the design of work-based learning experiences. (i.e., type, scheduling, placement, etc.)
Work-Based Learning Definition

From Perkins V...

Work-based learning is defined as “sustained interactions with industry or community professionals in real workplace settings, to the extent practicable, or simulated environments at an educational institution that fosters in-depth, firsthand engagement with the tasks required in a given career field, that are aligned to curriculum and instruction.”
Work-Based Learning Definition

Aligned to Graduation Requirements for the Class of 2023 and Beyond:

Supporting Demonstration of Competency in Career Experience & Technical Skill

Beginning as early as grade 9, students should accumulate 250 hours of work-based learning aligned to their program of study, or their student success or graduation plans, with evidence of positive evaluation.
Work-based learning experiences must occur at work-based learning sites (Can be virtual or within school facilities).

Work-based learning experiences must be co-supervised and co-evaluated by an instructor or other educational representative and an employer or business mentor.

A learning agreement built on professional, academic and technical competencies aligned to the student's program of study must be in place.
Types of Work-Based Learning

- Job Site Placement and Internship
- Apprenticeship and Pre-Apprenticeship
- Remote or Virtual Placement
- Entrepreneurship
- School-based Enterprise
- Simulated Work Environment

Template Learning Agreement
Scaffolding of supervision across types allows students to develop and demonstrate work-readiness – including self-regulation, ability to follow direction, etc.

All parties should be engaged regardless of setting to allow for this development.
Internship & Off-Site Placement

Work-based learning experiences must occur at work-based learning sites.

- Student would work at the physical location of the employer, during, before and/or after school.
- Student would interact with clients/customers as is commiserate with the work environment.

Work-based learning experiences should be co-supervised and co-evaluated.

- Student is an employee/intern of the business and should have a designated employer/supervisor.
- Educator can supervise and evaluate:
 - In a large group, small group or individual setting
 - As frequently as meets educational needs
Internship & Off-Site Placement

A learning agreement aligned to the program of study must be in place.

• Student will identify work tasks from employer. Student will work with educator to align work tasks to learning standards.

<table>
<thead>
<tr>
<th>Learning Standard</th>
<th>Work-Based Demonstration</th>
<th>Evidence of Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 5.9.11 Employ publicity to inform audiences of business activities, to create goodwill and to establish or reinforce brand (e.g., press releases, public-service announcements, press kits).</td>
<td>Draft press release for upcoming change in organization leadership.</td>
<td>Completed Press Release; Employer Evaluation</td>
</tr>
</tbody>
</table>
Apprenticeship & Pre-Apprenticeship

Work-based learning experiences must occur at work-based learning sites.
- Student would work at a work site as determined by the recognized operating plan.
- Student would interact with clients/customers as is commiserate with the work environment.

Work-based learning experiences should be co-supervised and co-evaluated.
- Student is an apprentice/pre-apprentice of the business and should have a designated business supervisor.
- Educator can supervise and evaluate:
 - In a large group, small group or individual setting
 - As frequently as meets educational needs
Apprenticeship & Pre-Apprenticeship

A learning agreement aligned to the program of study must be in place.

- Work tasks will be aligned to learning standards as part of the execution of the operating plan. The student, employer/business mentor and educator will contribute.

<table>
<thead>
<tr>
<th>Learning Standard</th>
<th>Work-Based Demonstration</th>
<th>Evidence of Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON 4.2.3 Analyze wiring schematics and diagrams to troubleshoot circuits.</td>
<td>Review wiring schematic and adjust.</td>
<td>Employer Evaluation; Student Record on Timesheet</td>
</tr>
</tbody>
</table>
Remote or Virtual Placement

Work-based learning experiences must occur at work-based learning sites.

- Student could work:
 - In school facilities during or after school hours**
 - From home before/after school & weekends

- Student would interact with client/customer virtually (Zoom, e-mail, etc.)

Work-based learning experiences should be co-supervised and co-evaluated.

- Student is an employee/intern of the business and should have a designated employer/supervisor.
- Supervision/evaluation could occur virtually (scheduled 1:1s, e-mail, etc.) with both Employer and Educator supervisors.
Remote or Virtual Placement

A learning agreement aligned to the program of study must be in place.

- Student will identify work tasks from employer. Student will work with educator to align work tasks to learning standards.

<table>
<thead>
<tr>
<th>Learning Standard</th>
<th>Work-Based Demonstration</th>
<th>Evidence of Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&C 4.7.5. Correct color, condense and enhance a video production.</td>
<td>Edit video file for website.</td>
<td>Completed Video/Webpage; Student Journal</td>
</tr>
</tbody>
</table>
Entrepreneurship

Work-based learning experiences must occur at work-based learning sites.

• Student could work:
 o In school facilities during or after school hours**
 o From home before/after school & weekends
 o In another location or work site

• Student would interact with clients/customers directly.

Work-based learning experiences should be co-supervised and co-evaluated.

• Both the educator and the business mentor will supervise and evaluate work as it is completed independently by the student.
Entrepreneurship

A learning agreement aligned to the program of study must be in place.

• Student will identify work tasks with Educator input. Business mentor will also review and advise on work tasks.

<table>
<thead>
<tr>
<th>Learning Standard</th>
<th>Work-Based Demonstration</th>
<th>Evidence of Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG 8.4.14. Control plant growth through mechanical and chemical means.</td>
<td>Prepare fern plants for sale in greenhouse.</td>
<td>Student Record on Timesheet; Inventory Records; Student Artifact</td>
</tr>
</tbody>
</table>
School-Based Enterprise

Work-based learning experiences must occur at work-based learning sites.

- Student will likely work in the school facilities, during or after school.
- Student will interact with clients/customers through services provided.

Work-based learning experiences should be co-supervised and co-evaluated.

- Educator will likely be primary or day-to-day supervisor.
- Business mentor can supervise and evaluate:
 - In a large group, small group or individual settings
 - As frequently as meets educational needs (**sustained interaction)
- Evaluations should be documented for each student
School-Based Enterprise

A learning agreement aligned to the program of study must be in place.

- Student will identify work tasks (may identify as group or team) with Educator input. Business mentor will also review and advise on work tasks.

<table>
<thead>
<tr>
<th>Learning Standard</th>
<th>Work-Based Demonstration</th>
<th>Evidence of Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&T 3.3.10. Mark, label, store and dispose of food and food by-products.</td>
<td>Follow procedure for proper labeling, storage and rotation of food products in production kitchen for bakery.</td>
<td>Student Record on Timesheet; Monthly Evaluation</td>
</tr>
</tbody>
</table>
Simulated Work Environment

Work-based learning experiences must occur at work-based learning sites.

- Will largely depend on design of experience
- Student could work:
 - In school facilities during or after school hours
 - From home before/after school & weekends
- Automotive Tech: Student works in the lab setting, interacts with customers who bring cars in for repair.

Work-based learning experiences should be co-supervised and co-evaluated.

- Educator will likely be primary or day-to-day supervisor.
- Business mentor can supervise and evaluate:
 - In a large group, small group or individual settings
 - As frequently as meets educational needs (**sustained interaction)
 - Evaluations should be documented for each student
Simulated Work Environment

A learning agreement aligned to the program of study must be in place.

- Student should work with Business Mentor & Educator to identify typical tasks of the work experience. Student will work with educator to align tasks to learning standards.

<table>
<thead>
<tr>
<th>Learning Standard</th>
<th>Work-Based Demonstration</th>
<th>Evidence of Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 2.4.2. Inspect fluid levels and fluid conditions on all mechanical systems.</td>
<td>Check all fluid levels & conditions for customer vehicle and replace as needed.</td>
<td>Student Record for Customer; Monthly Evaluation</td>
</tr>
</tbody>
</table>
Scheduling

Work-based learning can occur before, during & after school, on weekends and in the summer.

Questions to Consider:

- Will work-based learning be scheduled as part of the program of study or outside of school hours?
- Is there appropriately scheduled coordination time for the instructor or educational representative?
- Particularly if the student is working during school hours, is the student taking advantage of credit flexibility opportunities?
Scheduling Opportunities

Distinguish time within current courses for work-based learning to occur. (Planful & Well Documented!)

Adjust course scheduling to reduce course hours to allow for additional VP/V3.

Adjust program of study to include Capstone, VP or V3 in later years of program.

Adjust weekly or bi-weekly schedule to include dedicated experience days.

This additional time could allow for differentiation based on student need.

Credit flex, integrated coursework, and other personalized learning options allow for students to earn required credits.

Bonus: Take advantage of your local credit flexibility policy to allow students to earn credit for WBL!

Particularly for courses currently scheduled for the maximum number of hours.
Scheduling Pitfalls

- Distinguish work-based learning from classroom activities.
- Student is responsible for tracking and documentation of hours.
- Experience is sustained over time.
Alignment to Curriculum & Instruction

Work-based learning fosters in-depth, firsthand engagement aligned to curriculum and instruction.

Questions to Consider:

How are the work tasks of the experience aligned to the program of study standards and coursework?

If work tasks are limited to meet business needs, what additional classroom or independent study may supplement the student’s learning on the job?

Could there be an opportunity to earn an industry-recognized credential as a result of this experience?
Alignment Opportunities

- Include alignment between work tasks and learning standards as part of student documentation.
- Identify standards of priority from employers, WebXam blueprints, credentials, etc.
- Once alignments are developed, they can likely be used multiple times for team working environments of similar experiences.
- Consider CTSO competitive events to help frame possible experiences.
- CTSO events are aligned to technical content standards; true of industry-recognized credentials as well.

Don’t know where to start? Build an experience based on other program elements.

Student journal or timekeeping can include a “checklist” of learning outcomes.

While individual review and agreement is necessary, development will become easier over time!
Alignment Pitfalls

Experience represents breadth of program of study and associated industry.

Experience design is student led.

All stakeholders participate and advise in design of experience.
Evaluation

Work-based learning shows evidence of positive evaluation from both education and business partners.

Questions to Consider:

How often will the student be evaluated over the course of the experience?

What methods of evaluation will be used?

What opportunities will be provided for students to receive feedback outside of scheduled evaluations?
Evaluation Opportunities

Utilize employer’s business or organization-specific evaluation process.

Have students complete self-evaluation and discuss with educator/business mentor.

Prior to experience, develop in-class pre-assessment of student workplace readiness skills.

Use elements and artifacts from evaluation as graded components of coursework.

Another opportunity for credit flex; Portfolios, research projects, etc.

Can be used to encourage employer placement; align to OMJ Readiness Seal.

Helps foster real-world environment and aligns to business need.

Emphasizes student-led experience and creates flexibility for employer/business mentor.
Evaluation Pitfalls

- Student has sustained interaction with business mentor/employer.
- Student receives educational support and feedback.
- Student is responsible for documenting evaluation and demonstrating progress over time.
Work-Based Learning Reporting
Work-Based Learning Reporting

Reporting Reminders

All reporting for accountability takes place during the Student (S) and Graduate (G) collections using the following codes.

| Career Technical Program Codes | 305012: Internship Completion
305014: Apprenticeship/Pre-Apprenticeship
305099: Other Work-Based Learning | Used to calculate performance on the Career & Postsecondary Success Measure on the CTPD Report Card. | Can be reported in the Student (S) collection or the Graduate (G) collection. |
|-------------------------------|---|--|--|
| Work-Based Learning Program Codes | Work-Based Learning Hours Ranges:
310040: >0 and <40 hours
310099: 40-99 hours
310249: 100-249 hours
310499: 250-499 hours
310500: 500+ hours | Used to calculate performance for the CTE Quality Program Review and Perkins V accountability systems; calculations occur at the building pathway and CTPD level, respectively. | Can be reported in the Student (S) collection or the Graduate (G) collection; should always represent the cumulative total of hours, across grades 9-12. |
Work-Based Learning Reporting

Reporting Reminders

The current March (D) collection for Cumulative WBL Hours will be the **FINAL** collection of this exploratory element.

| Cumulative Work-Based Learning Hours | Reported as part of the March (D) Follow-Up; only work-based learning hours aligned to the Program of Concentration will be reported. An exact number of hours 0000-9999 will be entered. | Used to provide additional data regarding what portion of accumulated hours was aligned to the program of study reported in March (D). | Reported as part of the March (D) Follow-Up; only represents hours completed during grades 9-12. |

Data collected from the past 3 years will help inform discussion of Quality Program Review WBL targets (pathway level).
Work-Based Learning Reporting

Alignment is KEY!

Prior to Enrollment in CTE:
Align to Grad Plan/Student Success Plan

During Enrollment in CTE:
Align to Program of Study (Course Standards)

ALL hours reported in cumulative total
Opportunities for Access: Common Scenarios
Student Is Employed Part-Time

Student and Educator determine if there is a potential alignment between employment and learning standards.

Student contacts Supervisor about the potential to earn WBL hours (or credit) as a part of work (Educator supports as needed).

Student works with Educator to complete a more thorough alignment of job tasks to learning standards in the Learning Agreement.

Supervisor reviews Learning Agreement, adds additional information and signs.

Educator develops a supervision schedule – i.e., time to check-in with Student and Supervisor about the experience.

Employer evaluation can be used to monitor student progress.

BONUS: Educator follows-up with Supervisor on additional opportunities to engage with students/future employees to help create more opportunities.
Student Needs Additional Skill Development

1. Educator identifies skills needed using a Pre-Skills Assessment (e.g., OMJ Readiness Seal; employer feedback, etc.)
2. Educator identifies program opportunities for skill development (e.g., CTSO, in-school WBL, service learning, etc.)
3. Students assess skills with Educator/Business Mentor support and prepare a plan for development.
4. Educator engages Business Mentors in “low stakes” opportunities – e.g., classroom speaker, job shadowing, CTSO participation.
5. Student monitors and reports on skill development as part of classroom activities.
6. Educator shares progress of students with Business Mentors to demonstrate student skill development and preparedness for work.
School/Community Identified Need

School identified need for staff talent pipeline.

School developed a pathway for teaching, facilities maintenance, and IT support.

School worked with nearby postsecondary institution to stand-up in-house pre-apprenticeships.

Large regional Employer identified projected employment gaps in different departments.

Employer reached out to school to develop a multi-week WBL rotation in different departments (Now in 4 different districts)

Students' complete application and interview process, work study from general to specialized skill, and 50% have gained employment with employer after experience.
"The educational models for the past 40 years have operated with Business as an advisor. In this role, they could only inform learning experiences, with engagement being at the end of the student’s educational journey—hiring based on the level of educational attainment.

Industries and businesses need to shift their focus to engaging in the educational system as a solution partner. The time is now to invest in the supply side of this equation—

WBL provides the most effective way to close the skills gap."
Thank You!
Share your learning community with us!
#MyOhioClassroom

Celebrate educators!
#OhioLovesTeachers