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1. Introduction and Summary
Value-added modeling for educational evaluation is currently receiving considerable 
attention (Braun, Chudowsky and Koenig, 2010). As a result, a number of different 
value-added models (VAMs) have been proposed (Wainer, 2004). Two relatively 
recent additions to the VAM pantheon use nonparametric analyses that make fewer 
assumptions. These two models are the standardized gain model (SGM) and the 
student growth percentile model (SGPM). This paper investigates these two models, 
comparing them to some alternative models when applied to actual student test data. 
The SGM and the SGPM are described in Sections 2 and 3. Section 4 describes the 
data and additional models to which the SGM and SGPM are compared. Section 5 
presents the results of the comparisons, and Section 6 discusses those results.

It will be seen that both the SGM and the SGPM, despite having the word “gain” in 
their designations, are regression models that calculate value-added by “averaging” 
regression residuals. Both models, therefore, inherit certain disadvantages that these 
regression models possess. First and foremost, regression coefficients are biased by 
the presence of measurement error in the predictor variable(s). This bias is particularly 
severe in single-predictor regression models (such as the SGM), but the bias can be 
ameliorated by inclusion of multiple predictors (as the SGPM does whenever possible). 
In value-added regression models, this bias tends to manifest itself by attenuating the 
regression coefficients so that the model behaves more like a “status” model (which 
measures how much students know) as opposed to a “value-added” model (which 
measures how much students have learned). The result is that school and/or teacher 
effectiveness, as estimated by these models, tends to be correlated with school/
classroom composition, with high-poverty/high-minority schools/classrooms being more 
likely to be evaluated as ineffective. The results discussed below demonstrate this.

A second disadvantage that these two models share is due to their nonparametric 
methodology. The advantage of nonparametric models is that they make fewer 
assumptions and are therefore applicable in a wider variety of situations. Assumptions 
typically made in parametric regression models, but not made in nonparametric models, 
include normality, linearity, and homoscedasticity (constant variance). However, if these 
parametric assumptions are, in fact, true (at least approximately), then estimates from 
the parametric model are more precise than those from a nonparametric model. (If 
the assumptions are not true, the nonparametric model is demonstrably better.) The 
price that is paid for the additional generality of a nonparametric model is a loss of 
precision, that is, more uncertainty about which teachers or schools are being effective 
or ineffective. The results discussed below suggest that this additional uncertainty 
particularly affects the SGPM.
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2. The Standardized Gain Model (SGM)
Reback (2008) is an often cited reference for the SGM. Variants of this approach have 
been used in Tennessee (performanceincentives.org/research/mnps.asp) and in Texas 
(Springer, et al., 2009). McCaffrey, Han, and Lockwood (2010) include this approach 
in their comparisons of a large number of value-added models; they refer to it as the 
“lookup table” approach.

Let: 
Y = current (post-test) score, e.g., 2009 6th grade math score. 
X = previous (pre-test) score, e.g., 2008 5th grade math score. 
G = Y − X = gain. 
Mean[G|X] = mean of G values for all students with a particular X value. 
SD[G|X] = standard deviation of G values at a particular X value. 
Z = {G − Mean[G|X]} / SD[G|X].

“Z” is the standardized gain. In value-added applications, the standardized gain typically 
would be averaged for all students of a particular teacher, school or district to obtain 
an indicator of effectiveness. (Reback, 2008, and Ladd and Lauen, 2009, use the 
standardized gain as the dependent variable in further analyses that are not relevant 
in the present paper.) To see the connection to traditional regression analysis, note the 
following.

Mean[G|X] = Mean[(Y−X)|X] = Mean[Y|X] − X. 
SD[G|X] = SD[(Y−X)|X] = SD[Y|X]. 
Z = (Y − Mean[Y|X]) / SD[Y|X].

Z, the standardized gain, is seen to be a standardized regression residual since 
Mean[Y|X], the conditional mean of Y given X, is the line (or curve) of the regression of Y 
on X and SD[Y|X], the conditional standard deviation, is the square root of the residual 
variance in such a regression. In a traditional linear regression, Mean[Y|X] would be 
fitted as a straight line (the assumption of linearity) and SD[Y|X] would be the same for 
every X (the assumption of constant variance or homoscedasticity). The SGM relaxes 
these assumptions, allowing Mean[Y|X] to follow a nonlinear relationship and allowing for 
different variances at different values of X.

One difficulty in implementing the SGM is that for some X values there may be very few 
Y values. This can result in wild swings in the values of Mean[Y|X] and SD[Y|X]. In fact, 
in the examples below, some X values had only one associated Y value, resulting in a 
standard deviation of zero, making the calculation of a standardized gain impossible. 
This difficulty was addressed in this paper by smoothing Mean[Y|X] and SD[Y|X], as 
functions of X, using local regression (the LOESS procedure in SAS/STAT® 9.2).

http://www.performanceincentives.org/research/mnps.asp
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3. The Student Growth Percentiles Model (SGPM)
Betebenner (2009a, 2009b) is the primary advocate of this modeling approach, which 
has been implemented in Colorado (cde.state.co.us/research/GrowthModel.htm: 
follow the “Documentation” and “Resources for Users” links for more information), 
Massachusetts (doe.mass.edu/mcas/growth), and Indiana (doe.in.gov/growthmodel). 
This approach is closely related to the SGM. Recall that in the SGM, for each unique 
X value, there exists a collection of Y values from which conditional statistics are 
calculated, namely the conditional mean and standard deviation (Mean[Y|X] and SD[Y|X]). 
Other conditional statistics could be calculated as well, such as medians, quartiles, 
etc. In particular, for each Y value in the set of Y values at a given X value, one could 
calculate the conditional percentile rank within that set of Y values. This conditional 
percentile rank is the student growth percentile (SGP). It indicates a student’s level of 
achievement on test Y compared to other students who had the same prior test score X. 
It may be helpful to think about the SGP in terms of the standardized gains in the SGM 
of Section 2. Let Z be the standardized gain (i.e., the standardized regression residual) 
for a particular student. If the conditional distribution is normally distributed (as would be 
assumed in a parametric regression), then the SGP (the conditional percentile rank) is

SGP = 100 Φ(Z)

where Φ is the standard normal cumulative distribution function that evaluates the area 
to the left of Z under the standard normal “bell” curve.

The actual calculation of SGPs in the SGPM is done differently. The problem of instability 
due to small numbers of Y values at some X values, which was dealt with by smoothing 
in the SGM, is much more of a problem when calculating SGPs. This problem is 
compounded by the fact that, in the SGPM (unlike the SGM), multiple prior test scores 
are used when available. The result is that each set of Y values for calculating conditional 
percentiles is for students with the exact same set of prior test scores on multiple tests. 
Most of these sets of Y values will be quite small. Some kind of smoothing is therefore 
essential. The smoothing in the SGPM is accomplished by a statistical modeling 
technique called quantile regression. This differs from standard multiple regression in 
several ways. One, there is no assumption of normality. Two, there is no assumption 
of homoscedasticity. Three, the criterion for fitting is not minimizing squared errors but 
minimizing absolute errors. This provides a measure of robustness against outliers in 
the response variable; however, it does not protect against outliers in the predictor 
variables. Quantile regression models, like traditional multiple regression models, are 
“linear” models; but just as in traditional regression, nonlinear relationships can be 
accommodated, for example, by including polynomial terms in the regression. In the 
SGPM, nonlinearity is incorporated by modeling each prior test score using a smooth 
curve (a cubic B-spline with 4 knots). In quantile regression, a separate regression 
equation is estimated for each desired quantile; in the SGPM there are 99 desired 
quantiles corresponding to percentiles 1 to 99. A student’s actual 2009 math score is 
compared to the fitted value from each of the 99 regressions; the percentile that gives 
the best match to the student’s actual score is the student’s SGP.

http://www.cde.state.co.us/research/GrowthModel.htm
http://www.doe.mass.edu/mcas/growth
http://www.doe.in.gov/growthmodel
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For the purpose of obtaining a value-added indicator of effectiveness the SGPs, which 
are calculated for each student, must be summarized at the desired level of aggregation. 
In those places where the SGPM is currently in use, the aggregation is primarily at the 
school level. This paper focuses on teacher-level assessment. For the SGM of Section 
2, the summary statistic was the arithmetic mean. Since percentiles, and thus SGPs, 
do not possess an interval-scaled metric, the arithmetic mean is not appropriate. The 
median is used instead.

4. Data and Models for Comparison
The SGM and the SGPM, along with several other VAMs for comparison, were applied 
to three sets of statewide test scores. Specifically, these were the 5th grade, 6th grade 
and 7th grade spring 2009 math scores on the state criterion-referenced end-of-grade 
tests (the tests used for NCLB) from a state served by SAS® EVAAS® for K-12. Math test 
scores from up to three prior years/grades were used as predictors in the SGPM; the 
SGM uses only one prior score.

For value-added, aggregation was done at the teacher level. Note that, especially in 
grades 6 and 7, a teacher may have taught more than one class. Students from all 
classes were combined to obtain a single teacher value-added indicator. A student 
was included in the analyses only if a single teacher claimed at least 80% responsibility 
for that student in mathematics in 2009. Aggregate statistics (means, medians) were 
calculated only for teachers who had at least 8 students available for aggregation (i.e., 
8 SGPs, 8 standardized gains). For the SGM, aggregation was done by calculating the 
mean of the standardized gains. For the SGPM, aggregation was done by calculating 
the median of the SGPs. The following additional aggregate measures were obtained for 
comparison.

Additional SGPMs. In the standard SGPM, an SGP is obtained for each student 
who has at least one prior math test score (in the previous grade in the previous year, 
excluding students who did not progress normally), but it uses multiple prior math scores 
when available (up to 3 years in this paper). Thus, the SGP is based on three prior math 
scores for some students (from years 2008, 2007, 2006), on two prior math scores for 
other students (2008, 2007), and on one prior math score for other students (2008). 
In fact, most students had three prior test scores (except 5th graders for whom only 
two prior scores are available from 4th and 3rd grades). For comparison (especially for 
comparison to the SGM, which uses only one prior score), SGPs were also obtained 
using only one prior math score (2008) and only one or two prior math scores (2008 and 
2007).

Mean score and mean gain. The mean 2009 math score (in grade 5, 6 or 7) was 
calculated for each teacher’s students. This, of course, is not a value-added measure, 
but it provides a useful reference against which to compare the value-added model 
results. Similarly, the mean 2009 math gain was calculated for each teacher (2009 5th 
grade math minus 2008 4th grade math, 2009 6th grade math minus 2008 5th grade 
math, or 2009 7th grade math minus 2008 6th grade math).
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SAS EVAAS estimated gain. Since the data used in the analyses is from a state 
served by SAS EVAAS, it was possible to obtain estimated teacher gains from the 
EVAAS layered teacher model. This is a multivariate, longitudinal mixed model that 
uses up to five years of scores in four subjects (math, reading/language arts, science, 
social studies) for each student. For more information about this model see Sanders, 
et al. (1997) or McCaffrey, et al. (2004). As mentioned above, only students who were 
claimed (with at least 80% responsibility) by a single teacher were included in the 
analyses for this paper. Because the EVAAS gains were obtained from SAS EVAAS, 
it was not possible to apply this restriction to the EVAAS model. The EVAAS model 
accommodates team teaching and departmentalized instruction so that all students 
are included. Therefore, there were students included in the EVAAS gain calculations 
who were not included in any of the other models. However, for the purpose of making 
model comparisons, EVAAS gains were included only for those teachers for whom a 
mean score was available.

ANCOVA model. The analysis of covariance model used the 2009 math score as the 
response, the teacher identifier as the classification variable, and up to 12 prior test 
scores as covariates (up to 3 years in 4 subjects except 5th grade for which only two 
prior grades were available). The teacher effect was treated as a random effect (that 
is, the teacher effects are shrinkage, or empirical Bayes, estimates). To accommodate 
students with fewer than all 12 covariates (all 8 for 5th grade), a “composite prior score” 
(or “projected score”) was calculated using whichever of the covariates was available 
for each student. The method of obtaining these projected scores is described in 
Wright, et al. (2006). The predicted/composite score was then used as the covariate in 
the analysis of covariance. In order to minimize bias due to measurement error in the 
covariates, only composites based on at least 3 prior test scores were used.

Additional ANCOVA models. For comparison, additional ANCOVA models were run 
using just one prior math score (from 2008), using two prior math scores (2008 and 
2007), and using three prior math scores (2008, 2007, 2006). That is, these three 
models used the same prior scores as were used in the SGP models. However, unlike 
the above ANCOVA model and unlike the SGP models, but in conformity to the usual 
practice with ANCOVA modeling, students having fewer than the full set of covariates 
were excluded from the analyses.

Calculations. The SGPs were calculated using the SGP package (version 0.0-4) in 
R version 2.9.2 (R Development Core Team, 2009). SAS EVAAS teacher gains were 
obtained from SAS EVAAS modeling software. All other results were obtained using 
SAS software version 9.2.

Calculation of standard errors. In statistics, it is standard practice to provide a 
measure of uncertainty, e.g., a standard error, for estimated quantities. This was done 
for the estimates of teacher effectiveness from each of the above models. For the EVAAS 
Gains and the ANCOVA models, standard errors are supplied routinely by the software. 
For the SGM, the usual standard error of the mean was calculated for each teacher’s 
students when the mean was calculated. For the SGPM, the Colorado model calculates 
a “comparison region” around a median SGP as ±3*IQR/√N where IQR is the 
interquartile range of the SGPs and N is the number of students. (See cde.state.co.us/
cdeassess/sar_info.html, the “Academic Growth Calculation Example”.) This was re-
expressed as a standard error as follows. 

http://www.cde.state.co.us/cdeassess
http://www.cde.state.co.us/cdeassess
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For normally distributed data, the standard error of the median is 1.2533 /√N where  
is the population standard deviation (Stuart and Ord, 1994, §10.10). Again assuming a 
normal distribution,  can be estimated as IQR/1.3490 (Stuart and Ord, 1994, §10.11). 
This gives an estimated standard error of the median as 0.929*IQR/√N.

5. Results 
A primary concern among educators about any evaluation system, value-added or 
otherwise, is fairness. In particular, teachers in high-poverty/high-minority classrooms 
fear that they may be at a disadvantage compared to teachers in low-poverty/low-
minority classrooms. One way to address this concern is to look at the relationship 
between classroom poverty/minority composition and the evaluation criteria. Table 
2 shows the correlations between the criteria from each of the models discussed in 
Section 4 (listed for convenience in Table 1) and a teacher-level aggregate measure 
of poverty: the percentage of each teacher’s students who were eligible for free-or-
reduced-price lunch (%FRPL). (Similar correlations were obtained using percent minority 
rather than percent FRPL. The pattern of these correlations was similar to Table 2, but 
the correlations tended to be much closer to zero.)

 
 

Mean Score Arithmetic average of student scores.

Mean Gain Arithmetic average of student gains (2009 math score minus 2008 math 
score in previous grade).

EVAAS Gain Estimated gain from “layered” EVAAS multivariate, longitudinal mixed model.

ANCOVA: ≥ 3 covariates Analysis of covariance with random teacher effects using up to 12 
covariates (all available scores in four subjects from three previous years) 
with a minimum of 3 covariates.

ANCOVA: 3 math Random effects analysis of covariance using math scores from three 
previous years as covariates.

ANCOVA: 2 math Random effects analysis of covariance using math scores from two 
previous years as covariates.

ANCOVA: 1 math Random effects analysis of covariance using a single math score from the 
previous year as the covariate.

Mean Standardized Gain Arithmetic average of “standardized gains” (standardized regression 
residuals) as described in Section 2.

Median SGP: ≤ 3 math Median of student gain percentiles from quantile regression using math 
scores from one, two, or three previous years (whichever is largest) as 
described in Section 3.

Median SGP: ≤ 2 math Median of student gain percentiles from quantile regression using math 
scores from one or two previous years.

Median SGP: 1 math Median of student gain percentiles from quantile regression using math 
scores from the previous year.

Table 1. Descriptions of evaluation criteria used in comparisons of Section 5 and Table 2.
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Grade 5 Grade 6 Grade 7

N Corr N Corr N Corr

Mean Score 2322 −0.66 1085 −0.69 881 −0.70

Mean Gain 2319 −0.08 1082 +0.03 880 +0.05

EVAAS Gain 2322 −0.14 1085 −0.03 881 −0.03

ANCOVA: ≥ 3 covariates 2318 −0.13 1083 −0.07 880 −0.08

ANCOVA: 3 math 1074 −0.16 875 −0.17

ANCOVA: 2 math 2300 −0.28 1080 −0.20 877 −0.21

ANCOVA: 1 math 2319 −0.38 1082 −0.27 880 −0.32

Mean Standardized Gain 2319 −0.34 1082 −0.24 880 −0.27

Median SGP: ≤ 3 math 1082 −0.13 880 −0.16

Median SGP: ≤ 2 math 2319 −0.23 1082 −0.16 880 −0.18

Median SGP: 1 math 2319 −0.31 1082 −0.21 880 −0.24

Table 2. Correlations between teacher effectiveness indicators from various models and 
classroom composition. N is the number of teachers having at least 8 students available 
for use in the model. “Corr” is the correlation between estimated teacher effectiveness 
and percent free-and-reduced-price-lunch eligibility (%FRPL).

The correlations of %FRPL with average scores (“Mean Score” in Table 2) demonstrate 
why educators are concerned. The large negative correlations indicate that teachers 
in high-poverty environments will tend to get poorer evaluations when evaluated by 
student “status.” One of the attractions of value-added modeling is its potential to avoid 
the unfairness of status criteria.

This potential to avoid overt unfairness is borne out by most of the remaining criteria 
in Table 2, all of which (other than “Mean Score”) are generally considered to be value-
added criteria. For the first three VAMs (“Mean Gain”, “EVAAS Gain”, “ANCOVA: ≥ 3 
covariates”), correlations with %FRPL are relatively small (close to zero in grades 6 and 
7). For the remaining VAMs, all of which involve regressions with a limited number of 
predictor variables (3 or fewer), the correlations become noticeably larger in magnitude. 
All of the correlations are highly statistically significant (p-value < 0.0001) except 6th and 
7th grade “Mean Gain” and “EVAAS Gain” (p-values from .14 to .44) and 6th and 7th 
grade “ANCOVA: ≥ 3 covariates” (p-values .03 and .02, respectively, i.e., significant but 
not highly significant). However, given the large sample sizes, statistical significance is a 
poor indicator of the practical importance of the correlations.

6. Discussion: Threats to Value-Added Modeling
The attention that value-added modeling has received is due to its promise of a fairer, 
more objective assessment of the extent to which teachers and schools are helping 
their students learn. The results in Table 2 suggest that, by one measure of fairness 
(correlation with a poverty indicator), value-added models succeed at this, though some 
VAMs are more successful than others. However, as critics of value-added modeling are 
happy to point out, there are a number of issues that threaten to prevent value-added 
modeling from delivering on its promise. Several of these threats are discussed below 
with particular emphasis on how they affect the SGM and SGPM.
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Measurement error. The effect of measurement error in the predictor variable in a one-
predictor linear regression model is well-known: The regression coefficient is biased 
toward zero. In the context of value-added indicators based on “average” (mean or 
median) regression residuals, the consequence is that the “value-added” effectiveness 
indicator is more like a “status” indicator. (In the extreme case of a regression coefficient 
biased completely to zero, the regression residuals are simply deviations from a grand 
mean and the averaged residuals are equivalent to calculating the mean score.) This 
measurement-error-induced bias can be ameliorated by including multiple predictors in 
the regression so that their measurement errors tend to average out.

To the extent that a value-added indicator measures status rather than value-added, 
it inherits the unfairness of a status indicator, e.g., it tends to be negatively correlated 
with classroom poverty. This is well-displayed in Table 2. The single-predictor regression 
models (SGM, SGPM and ANCOVA with one predictor) have correlations with %FRPL 
ranging from −0.21 to −0.38. With the two-predictor SGPM and ANCOVA, the 
correlations become smaller; with 3 predictors they are smaller still. With the general 
ANCOVA, in which many students have 8 predictors (5th grade) or 12 predictors (6th 
and 7th grade), the correlations are even lower, approaching zero in grades 6 and 7.

For models that estimate gain (simple mean gain, EVAAS gain), the effect of 
measurement error is not so much to increase bias but to increase estimation error. 
(However, there are other ways these estimates can become biased; see the section on 
missing data below.) As a result, they tend to have small correlations with %FRPL, near 
zero in grades 6 and 7.

Estimation error. Figures 1 and 2 each contain a scatterplot of t-values from two value-
added models. Each t-value has the form of an “effect” divided by its standard error. For 
this discussion, an “effect” is a value-added indicator for a particular teacher minus the 
average value-added indicator for all teachers; that is, the effect for an average teacher 
is set to zero. Standard errors were discussed at the end of Section 4. Dividing an effect 
by its standard error puts it on a familiar scale. In conventional statistical terminology, 
t-values greater than 2 in magnitude are “statistically significantly different from zero.” 
Teachers with t-values greater than +2 could be considered “demonstrably better than 
average” in the sense that their students made demonstrably more academic progress 
than students of the average teacher. Those with t-values below −2 are “demonstrably 
poorer than average.” (In Figures 1 and 2 there are vertical and horizontal reference lines 
at ±2 as well as at zero.)

Figure 1 plots t-values from the SGM against the EVAAS gain model. Plots of most other 
models against one another have a similar appearance. The correlation is high (generally 
about 0.90); and while there is considerable agreement about which teachers are above 
average, below average, or not detectably different from average, there is enough 
disagreement to make the choice of a value-added model an important decision. The 
one model that stands out in such scatterplots is the SGPM, shown in Figure 2 plotted 
against the EVAAS gain model. This plot shows noticeably more scatter especially at 
the high and low ends of the scale. This suggests that there is more instability in the 
estimates from the SGPM than from other models.
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Figure 1. Scatterplot of 6th grade t-values from SGM versus t-values from EVAAS model 
with diagonal 1-to-1 line and reference lines at zero and ±2.

Greater instability in the SGPM estimates is not unexpected. Estimates from 
nonparametric methods are, by their nature, less stable than those from parametric 
analyses. However, the SGPM estimates seem even more unstable than the SGM 
estimates, which are also nonparametric. The extra instability in the SGPM may be 
due, in part, to the quantile regression algorithm. Estimating a regression at extreme 
percentiles (near zero or 100) can be challenging even with a large data set. The task is 
made more challenging in the SGPM by the use of nonlinear relationships. The SGPM 
with 3 prior scores, by using a cubic spline with 4 knots for each prior score, is actually 
estimating 21 regression coefficients (in addition to an intercept). With over 50,000 
students in the regression (see below), this is not an unreasonable task for percentiles 
near the center of the distribution (e.g., 50th percentile); but at the extremes, the 
estimated regression coefficients are likely to contain a large amount of estimation error. 
The number of students whose SGPs are in the extremes is non-trivial. SGPs, being 
percentiles, are approximately uniformly distributed. This means, for example, that 20% 
of the students have SGPs ≤10 or ≥90. Of course, the teacher-level median SGPs are 
less extreme, and less unstable, than the individual student SGPs; for the analyses in 
this paper, the median SGPs were mostly between 25 and 75. However, the estimated 
standard errors of these median SGPs, which are based on sample interquartile ranges, 
are likely to be quite unstable, especially in small classrooms and especially if those 
small classrooms have many students with extreme SGPs. Since these standard errors 
are necessary to discriminate reliably among “good” teachers, “bad” teachers, and 
“average” teachers, this instability is a serious threat to the usefulness of the SGPM. See 
the section on “Measurement error and nonlinearity” for additional comments on the SGPM.
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Missing data. As mentioned above, one solution to the problem of measurement error 
in regression models is to include more predictor variables in the regression. The flaw 
in this plan is that students miss tests. The more predictors there are, the greater the 
chance that a student will have missing data for at least one predictor; and in traditional 
regression modeling, a student must have data on all predictors (as well as the 
response) to be included in the analysis. The impact of missing data is shown in Table 
3, which indicates how many students were used in each model described in Sections 
2 through 4. Nearly 95% of the students had a prior math score: These students 
were used in the “Mean Gain” calculation as well as the SGM, all the SGPMs, and the 
ANCOVA with one prior math score. In the ANCOVA with 2 prior scores, the percentage 
falls to about 88%; with 3 prior scores it falls to about 83%. This also affects the number 
of teachers who can be evaluated (shown in Table 2) since, for example, a teacher who 
has 8 students with scores may have fewer than 8 students with gains. Notice that the 
number of students used in the “EVAAS Gain” is 5-6% larger than for “Mean Score” 
(even though the same teachers were used for both). As noted in Section 4, the EVAAS 
model includes students who were taught by multiple teachers while the other models 
were limited to students taught primarily by a single teacher. It would be possible to 
modify the other models to handle multiple teachers per student, but in practice this has 
not yet been done. 

Grade 5 Grade 6 Grade 7

Students Percent Students Percent Students Percent

Mean Score 57990 100 56579 100 56060 100

Mean Gain 54887 94.6 53272 94.2 52982 94.5

EVAAS Gain 60904 105.0 60309 106.6 59513 106.2

ANCOVA: ≥ 3 
covariates

55427 95.6 54108 95.6 53721 95.8

ANCOVA: 2 
math

51022 87.8 50064 88.5 49625 88.5

ANCOVA: 3 
math

46548 82.3 46546 83.0

 

 
Table 3. Number of students used in each model. Numbers for one-predictor ANCOVA, 
SGM, and SGPM are the same as for “Mean Gain.” See the text for an explanation of the 
EVAAS Gain model.

Even with only 83% of the students (the worst case in Table 3), that still leaves nearly 
50,000 students, so why is missing data a problem? One problem is that each teacher 
does not have 50,000 students. It is the number of students per teacher that is relevant 
when estimating teacher effectiveness, so the loss of even a handful of students can 
have a big impact on the stability (standard error) of an estimate. This is particularly 
true in elementary school where most teachers teach a single class (the mean number 
of students per teacher who had a “Mean Score” in 5th grade was 25). It is less of a 
concern in middle school (6th grade mean n=52, 7th grade mean n=64).



11

An Investigation of Two Nonparametric Regression Models for Value-Added Assessment in Education

A second problem is bias. With the exception of the EVAAS model, the estimates 
from all the models assume students are “missing completely at random.” Roughly 
speaking, this means that the available (non-missing) scores are a fair representation 
of the missing scores. This is demonstrably not the case; rather, scores near the low 
end of the distribution are more likely to be missing than high-end scores. Such non-
random missingness can produce biased estimates even for “Mean Gain” estimates 
(Wright, 2004). One of the attractive features of multivariate, longitudinal models such 
as the EVAAS model is its ability to minimize such bias (Wright, 2004; Lockwood and 
McCaffrey, 2007, p. 29). This bias reduction results from including all available student 
scores and from using estimation methodology (maximum likelihood), which only 
requires “missing at random” rather than “missing completely at random.” (Roughly 
speaking, “missing at random” means that the missing scores are “predictable” from the 
non-missing scores.)

Additional topics: Measurement error and nonlinearity. Betebenner (2009b) 
demonstrates the need to allow for nonlinearity and heteroscedasticity in the SGPM 
by showing graphical results from two one-predictor quantile regressions (his Figure 2: 
grade 6 math regressed on grade 5 math). One of the quantile regressions uses linear 
relationships; the other allows for nonlinearity using splines as in the SGPM. The spline 
regressions clearly show an S-shaped nonlinear pattern with some heteroscedasticity in 
the tails, particularly the lower tail (low 5th grade math scores). It should be noted that 
one of the characteristics of standardized tests is that there is more measurement error 
in high and low scores than in scores near the center of the distribution. This suggests 
that the nonlinearity and heteroscedasticity seen in Betebenner’s (2009b) Figure 2 is the 
result of measurement error. This was confirmed by doing a simple simulation. Bivariate 
normal X and Y scores were simulated so that the true regression of Y on X would be 
linear and homoscedastic. Y was then regressed on X using quantile regression with 
splines. The resulting regressions appeared linear and homoscedastic, as expected. 
Then random error was added to X and Y with the amount of error increasing toward 
the extremes. Again Y was regressed on X using quantile regression with splines. The 
results showed the characteristic S-shaped curve with heteroscedasticity. This suggests 
that the SGPM regressions are being biased in multiple ways by the presence of 
measurement error in the predictors. Not only is the overall relationship biased toward 
zero (toward a status model), but this bias is exacerbated for low and high scoring 
students (and thus for teachers of predominantly low or high scoring students) by 
modeling measurement-error-induced nonlinearity.
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Figure 2. Scatterplot of 6th grade t-values from SGPM using up to 3 prior math scores 
versus t-values from EVAAS model with diagonal 1-to-1 line and reference lines at zero 
and ±2.

Additional topics: Analysis of Gains. The purpose of this paper was to evaluate 
the SGM and SGPM approaches to value-added assessment, not to conduct a 
comprehensive comparison of all possible value-added models. For that purpose, 
see McCaffrey, et al. (2004, 2010). However, the observant reader cannot fail to have 
noticed that, at least in terms of “fairness” as indicated by Table 2, the very simple, 
easily calculated, easily understood “Mean Gain” indicator of value-added seems to 
be competitive with the statistically sophisticated, computationally demanding “EVAAS 
Gain” indicator. A word of warning is therefore in order for those who are tempted to 
conclude that simple gains are all that is needed for value-added analysis. First, gain 
scores are relatively noisy. As noted above, the effect of measurement error on “Mean 
Gain” estimates is not to produce bias but to increase estimation error. McCaffrey, et 
al. (2010, p. 133) have made note of this: “Gain-score methods are like a coin flip – fair 
but capricious.” Second, there is the problem of missing data. This exacerbates the 
noisiness of gain-scores by reducing the sample size, and it also has the potential to 
produce bias due to non-random missing data. In fairness, it should be noted that if 
there is bias in the “Mean Gain” estimates, the impact of that bias is not to produce the 
kind of obvious unfairness that produces negative correlations with poverty as seen for 
many of the estimates in Table 2. To summarize, the major disadvantage of using gain 
scores is their instability.
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Additional topics: “Total” versus “pooled-within” regression. Of the models 
compared in this paper, the ANCOVA models, the SGPMs, and the SGM (all except 
“Mean Score,” “Mean Gain,” and “EVAAS Gain”) may be characterized as regression 
models in which a student’s current-year score is predicted from one or more prior-year 
scores. However, these models use two rather different philosophies for estimating 
regression coefficients and, consequently, for obtaining regression residuals from which 
value-added effectiveness indicators are obtained. The ANCOVA models estimate 
“pooled-within-teacher” regression coefficients that take into account the grouping of 
students within teachers. In contrast, the SGM and SGPMs calculate “total” regression 
coefficients that ignore the grouping of students within teachers. Mathematically, in 
ordinary regression, the “total” coefficients can be shown to be a weighted average 
of the “pooled-within” coefficients and the “between” regression coefficients, where 
the “between” coefficients are obtained by regressing teacher-level mean current-year 
scores on teacher-level mean prior-year scores (using the number of students per 
teacher as weights in the regression). If the “between” regression is different from the 
“pooled-within” regression, then the total regression model estimates (SGM, SGPM) 
will differ from pooled-within model estimates (ANCOVA). It seems unlikely that these 
regressions would differ much when using statewide data (although this was not 
investigated for this paper and merits future investigation). It would be of greater concern 
if the SGM or SGPM were applied on a smaller scale, for example, within a single district.

7. Conclusions
The primary purpose of this paper was to examine two relatively recent value-added 
models, the standardized gain model (SGM) and the student growth percentile model 
(SGPM), and to assess their potential usefulness for value-added evaluation compared 
to other value-added models. It was shown that both of these models are a type of 
regression model that estimates value-added effectiveness by “averaging” regression 
residuals. These models differ from other regression models used in value-added 
modeling (analysis of covariance, hierarchical linear models) in taking a non-parametric 
approach to the regression, thereby avoiding the traditional regression assumptions 
of normality, linearity, and homoscedasticity (constant variance). Nevertheless, these 
models inherit the disadvantages that are common to all regression models. The most 
serious disadvantage is that measurement error in the predictor variable(s) produces 
biased estimates. This bias shows itself in estimates that are correlated with school/
classroom composition, with high-poverty/high-minority schools/classrooms being more 
likely to be evaluated as ineffective. This bias is particularly severe in the SGM, which 
uses only one predictor variable. The bias can be reduced by using multiple predictor 
variables in the regression; the SGPM (but not the SGM) does this whenever possible. 
However, among the models compared in this paper, the SGPM produced the most 
unstable estimates. This extra instability appears to be the result of using quantile 
regression methodology combined with nonlinear relationships (cubic splines).
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Like all value-added models, the SGM and the SGPM have advantages and 
disadvantages that should be carefully considered by potential users. In the case of 
the SGM, the only apparent advantage is its transparency – it is easy to explain. This is 
more than outweighed by its bias against teachers of socioeconomically disadvantaged 
students caused by measurement error in the test scores. The SGPM potentially suffers 
the same disadvantage (without the benefit of transparency) unless it incorporates 
multiple prior test scores (as it does whenever possible). In addition, the SGPM suffers 
more from instability than do most other models, reducing its ability to discriminate 
reliably among teachers of below average, average, and above average effectiveness.
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