INSULIN DOSE CALCULATION
Information Needed to Get Started

- How many grams of carbs the child is eating
- Blood glucose (BG) taken before eating
- Important numbers from primary caregiver:
 - Carbohydrate Ratio
 - Correction Target
 - Correction Factor
Insulin Dose Calculation Definitions

- **Carbohydrate Ratio**
 How many grams of carbohydrates will be covered by one unit of insulin

- **Correction Target**
 Target blood glucose value used for insulin dose calculations when the blood glucose is high

- **Correction Factor**
 How many points (mg/dL) one unit of insulin will lower the blood glucose over several hours
Bolus Insulin Calculation Worksheet

1. **Calculate Carbohydrate Bolus:**
 \[
 \frac{\text{Carbohydrates to Eat}}{\text{CARBOHYDRATE RATIO}} = \text{Carbohydrate Bolus}
 \]
 (Round to nearest tenth)

2. **Calculate Correction Bolus:**
 \[
 \frac{\text{Blood Glucose} - \text{CORRECTION TARGET}}{\text{CORRECTION FACTOR}} = \frac{\text{Amount to Correct}}{\text{Correction Bolus}}
 \]
 (Round to nearest tenth)

3. **Calculate Total Insulin Bolus:**
 \[
 \text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total}
 \]
 \[
 \text{*Rounded Total Insulin Bolus}
 \]

Insulin for carbs

Insulin for high blood glucose

Add insulin for carbs to insulin for high blood glucose
Bolus Insulin Calculation Worksheet

1. **Calculate Carbohydrate Bolus:**
 \[\frac{\text{Carbohydrates to Eat}}{15} = \text{Carbohydrate Bolus} \quad \text{(Round to nearest tenth)} \]

2. **Calculate Correction Bolus:**
 \[\frac{120}{\text{Amount to Correct}} = \frac{30}{\text{Correction Bolus}} \quad \text{(Round to nearest tenth)} \]

3. **Calculate Total Insulin Bolus:**
 \[\text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total} \quad \text{*Rounded Total Insulin Bolus} \]

Place the example numbers on the worksheet.
- Carbohydrate Ratio: 15
- Correction Target: 120
- Correction Factor: 30
Bolus Insulin Calculation Worksheet

1. Calculate Carbohydrate Bolus:
 \[\frac{\text{Carbohydrates to Eat}}{15} = \text{Carbohydrate Bolus (Round to nearest tenth)} \]

2. Calculate Correction Bolus:
 \[\frac{120}{\text{Blood Glucose (CORRECTION TARGET)}} = \frac{\text{Amount to Correct}}{30} = \text{Correction Bolus (Round to nearest tenth)} \]

3. Calculate Total Insulin Bolus:
 \[\text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total} \rightarrow \text{*Rounded Total Insulin Bolus} \]

Place the example numbers on the worksheet.

Carbohydrate Ratio: 15
Correction Target: 120
Correction Factor: 30
Bolus Insulin Calculation Worksheet

1. Calculate **Carbohydrate Bolus**:

 \[
 \frac{68}{15} = \text{Carbohydrate Bolus (Round to nearest tenth)}
 \]

2. Calculate **Correction Bolus**:

 \[
 \frac{214 - 120}{30} = \text{Correction Bolus (Round to nearest tenth)}
 \]

3. Calculate **Total Insulin Bolus**:

 \[
 \text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total Insulin Bolus (Rounded to nearest tenth)}
 \]

Place total carbs and blood glucose on the worksheet.

- Carb Grams: 68
- Blood Glucose: 214
Bolus Insulin Calculation Worksheet

1. Calculate Carbohydrate Bolus:
 \[
 \frac{68}{15} = 4.5
 \]
 Carbohydrates to Eat \(\text{CARBOHYDRATE RATIO}\)
 Carbohydrate Bolus (Round to nearest tenth)

2. Calculate Correction Bolus:
 \[
 \frac{214 - 120}{30} = \frac{94}{30} = 3.133
 \]
 Blood Glucose \(\text{CORRECTION TARGET}\)
 Amount to Correct \(\text{CORRECTION FACTOR}\)
 Correction Bolus (Round to nearest tenth)

3. Calculate Total Insulin Bolus:
 \[
 \text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total}
 \]
 *Rounded Total Insulin Bolus

For example:
4.533 rounds to 4.5
4.555 rounds to 4.6
Bolus Insulin Calculation Worksheet

1. **Calculate Carbohydrate Bolus:**
 \[
 \frac{68}{15} = 4.5
 \]
 Carbohydrates to Eat \(\div \) CARBOHYDRATE RATIO = Carbohydrate Bolus (Round to nearest tenth)

2. **Calculate Correction Bolus:**
 \[
 214 - 120 = 94
 \]
 Blood Glucose - CORRECTION TARGET = Amount to Correct \(\div \) CORRECTION FACTOR = Correction Bolus (Round to nearest tenth)

3. **Calculate Total Insulin Bolus:**
 \[
 \text{Carbohydrate Bolus} + \text{Correction Bolus} \rightarrow \text{Total Insulin Bolus}
 \]
 *Rounded Total Insulin Bolus

Calculate Correction Bolus:
\[
214 - 120 = 94 \div 30 = 3.133
\]
Round answer to nearest tenths

For example:
3.133 rounds to 3.1
3.155 rounds to 3.2
Bolus Insulin Calculation Worksheet

1. **Calculate Carbohydrate Bolus:**

 \[
 \frac{68}{15} = \frac{4.5}{\text{Carbohydrate Bolus}}
 \]

 Carbohydrates to Eat \[\div\] CARBOHYDRATE RATIO = Carbohydrate Bolus

 (Round to nearest tenth)

2. **Calculate Correction Bolus:**

 \[
 \frac{214}{120} = \frac{94}{\text{Correction Bolus}}
 \]

 Blood Glucose \[\div\] CORRECTION TARGET = Amount to Correct

 (Round to nearest tenth)

3. **Calculate Total Insulin Bolus:**

 \[
 \frac{4.5}{3.1} = \frac{7.6}{\text{Total Insulin Bolus}}
 \]

 Carbohydrate Bolus \[+\] Correction Bolus = Total

 *Rounded Total Insulin Bolus

Add the carb bolus to the correction bolus:

\[4.5 + 3.1 = 7.6\]
Bolus Insulin Calculation Worksheet

1. **Calculate Carbohydrate Bolus:**

 \[
 \frac{68}{15} = 4.5
 \]

 Carbohydrates to Eat \(\div \) CARBOHYDRATE RATIO = Carbohydrate Bolus (Round to nearest tenth)

2. **Calculate Correction Bolus:**

 \[
 \frac{214 - 120}{30} = 3.1
 \]

 Blood Glucose \(-\) CORRECTION TARGET = Amount to Correct \(\div\) CORRECTION FACTOR = Correction Bolus (Round to nearest tenth)

3. **Calculate Total Insulin Bolus:**

 \[
 4.5 + 3.1 = 7.6
 \]

 Carbohydrate Bolus + Correction Bolus = Total

* Rounded Total Insulin Bolus

The final Rounded Total Insulin Bolus depends if the child uses half units or whole units.

This example is done in half units.

Rounding Rules

ROUNDING RULE for ½ Unit:
- 0.1-0.3 = Round down to whole unit
- 0.4-0.7 = Round to ½ unit
- 0.8-0.9 = Round up to whole unit

ROUNDING RULES for Whole Unit:
- 0.1-0.4 = Round down to whole unit
- 0.5-0.9 = Round up to whole unit
Bolus Insulin Calculation Worksheet

1. **Calculate Carbohydrate Bolus:**
 \[
 \frac{68}{15} = 4.5
 \]
 Carbohydrates to Eat \(\frac{\text{CARBOHYDRATE RATIO}}{\text{CARBOHYDRATE BOLUS}} \) (Round to nearest tenth)

2. **Calculate Correction Bolus:**
 \[
 \frac{214 - 120}{94 \div 30} = 3.1
 \]
 Blood Glucose \(\frac{\text{CORRECTION TARGET}}{\text{AMOUNT TO CORRECT}} \) \(\text{CORRECTION FACTOR} \) (Round to nearest tenth)

3. **Calculate Total Insulin Bolus:**
 \[
 4.5 + 3.1 = 7.6 \rightarrow 8
 \]
 Carbohydrate Bolus \(\text{CORRECTION BOLUS} \) \(\text{TOTAL} \) *Rounded Total Insulin Bolus

The final rounded total Insulin Bolus depends if the child doses in half units or whole units.

This example is done in whole units.

ROUNDING RULE for ½ Unit:
- 0.1-0.3 = Round down to whole unit
- 0.4-0.7 = Round to ½ unit
- 0.8-0.9 = Round up to whole unit

ROUNDING RULES for Whole Unit:
- 0.1-0.4 = Round down to whole unit
- 0.5-0.9 = Round up to whole unit
Practice Problem #1

Scenario:
Ryan’s blood glucose before breakfast is 189 and he is about to eat 31 grams of carbs. Ryan uses a half unit insulin pen.

Carb Ratio = 12
Correction Target = 120
Correction Factor = 25

Calculate how much insulin Ryan needs.

ROUNDING RULE for ½ Unit:
0.1-0.3 = Round down to whole unit
0.4-0.7 = Round to ½ unit
0.8-0.9 = Round up to whole unit

ROUNDING RULES for Whole Unit:
0.1-0.4 = Round down to whole unit
0.5-0.9 = Round up to whole unit
Practice Problem #1: Answers

Scenario:
Ryan’s blood glucose before breakfast is 189 and he is about to eat 31 grams of carbs. Ryan uses a half unit insulin pen.

Carb Ratio = 12
Correction Target = 120
Correction Factor = 25

Calculate how much insulin Ryan needs.

<table>
<thead>
<tr>
<th>Step</th>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
</table>
| 1. Calculate Carbohydrate Bolus: | \[
\frac{31}{12} = 2.58 = 2.6
\] | Amount to Correct Carbohydrate Bolus (Round to nearest tenth) |
| 2. Calculate Correction Bolus: | \[
\frac{189 - 120}{25} = 69 \div 25 = 2.76 = 2.8
\] | Correction Bolus (Round to nearest tenth) |
| 3. Calculate Total Insulin Bolus: | \[
2.6 + 2.8 = 5.4 \rightarrow 5.5
\] | Total Insulin Bolus |

Rounded Total Insulin Bolus

Rounding Rules:
- For half units: 0.1-0.3 = Round down to whole unit, 0.4-0.7 = Round to ½ unit, 0.8-0.9 = Round up to whole unit
- For whole units: 0.1-0.4 = Round down to whole unit, 0.5-0.9 = Round up to whole unit
Practice Problem #2

Scenario:
Annie’s blood glucose before lunch is 142 and she is about to eat 68 grams of carbs. Annie uses a whole unit insulin pen.

Carb Ratio = 9
Correction Target = 120
Correction Factor = 24

Calculate how much insulin Annie needs.

1. Calculate Carbohydrate Bolus:
 \[
 \frac{\text{Carbohydrates to Eat}}{\text{CARBOHYDRATE RATIO}} = \text{Carbohydrate Bolus (Round to nearest tenth)}
 \]

2. Calculate Correction Bolus:
 \[
 \frac{\text{Blood Glucose} - \text{CORRECTION TARGET}}{\text{CORRECTION FACTOR}} = \text{Correction Bolus (Round to nearest tenth)}
 \]

3. Calculate Total Insulin Bolus:
 \[
 \text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total} \rightarrow \text{Rounded Total Insulin Bolus}
 \]

ROUNDING RULE for ½ Unit:
0.1-0.3 = Round down to whole unit
0.4-0.7 = Round to ½ unit
0.8-0.9 = Round up to whole unit

ROUNDING RULES for Whole Unit:
0.1-0.4 = Round down to whole unit
0.5-0.9 = Round up to whole unit
Practice Problem #2: Answers

Scenario:
Annie’s blood glucose before lunch is 142 and she is about to eat 68 grams of carbs. Annie uses a whole unit insulin pen.

Carb Ratio = 9
Correction Target = 120
Correction Factor = 24

Calculate how much insulin Annie needs.

<table>
<thead>
<tr>
<th>Step</th>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
</table>
| 1. | Carbohydrate Bolus:
\[
\frac{68}{9} = 7.56 = 7.6
\] | 7.6 |
| 2. | Correction Bolus:
\[
\frac{142 - 120}{24} = 0.92 = 0.9
\] | 0.9 |
| 3. | Total Insulin Bolus:
\[
7.6 + 0.9 = 8.5 \rightarrow 9
\] | 9 |

Rounding Rules

- **Rounding Rule for ½ Unit:**
 - 0.1-0.3 = Round down to whole unit
 - 0.4-0.7 = Round to ½ unit
 - 0.8-0.9 = Round up to whole unit

- **Rounding Rules for Whole Unit:**
 - 0.1-0.4 = Round down to whole unit
 - 0.5-0.9 = Round up to whole unit
Practice Problem #3

Scenario: Colton’s blood glucose before a school birthday party at 2 pm is 214 and he is about to eat 30 grams of carbs from a cupcake. Colton uses half unit syringes.

Carb Ratio = 45
Correction Target = 150
Correction Factor = 100

Calculate how much insulin Colton needs.

Solution

1. **Calculate Carbohydrate Bolus:**

 \[
 \frac{\text{Carbohydrates to Eat}}{\text{CARBOHYDRATE RATIO}} = \frac{\text{Carbohydrate Bolus}}{\text{(Round to nearest tenth)}}
 \]

2. **Calculate Correction Bolus:**

 \[
 \frac{\text{Blood Glucose} - \text{CORRECTION TARGET}}{\text{CORRECTION FACTOR}} = \frac{\text{Amount to Correct}}{\text{Correction Bolus}}\text{ (Round to nearest tenth)}
 \]

3. **Calculate Total Insulin Bolus:**

 \[
 \text{Carbohydrate Bolus} + \text{Correction Bolus} = \text{Total} \quad \text{*Rounded Total Insulin Bolus}
 \]

Rounding Rules:

- **ROUNDING RULE for ½ Unit:**
 - 0.1-0.3 = Round down to whole unit
 - 0.4-0.7 = Round to ½ unit
 - 0.8-0.9 = Round up to whole unit

- **ROUNDING RULES for Whole Unit:**
 - 0.1-0.4 = Round down to whole unit
 - 0.5-0.9 = Round up to whole unit
Practice Problem #3: Answers

Scenario:
Colton’s blood glucose before a school birthday party at 2 pm is 214 and he is about to eat 30 grams of carbs from a cupcake. Colton uses half unit syringes.

Carb Ratio = 45
Correction Target = 150
Correction Factor = 100

Calculate how much insulin Colton needs.
There are times you will not calculate a Correction Bolus and will only calculate a Carbohydrate Bolus.
Do not calculate a Correction Bolus:

- If blood glucose is less than the CORRECTION TARGET*
- If it has been less than three hours since the last carbohydrate bolus or correction bolus*
- If you have treated a low blood glucose in the past three hours*
- If it has been less than one hour since vigorous exercise*

* These rules may vary depending on the diabetes prescriber. REFER TO THE MEDICAL ORDERS FOR DETAILS.

Following these rules will help prevent giving too much insulin that can lead to a low blood glucose.